LEADER 05614nam a2200577 c 4500
001 22-105-qucosa2-769753
007 cr
008 2022 eng
037 |a urn:nbn:de:bsz:105-qucosa2-769753 
041 |a eng 
082 |a 550 
100 |a Demmler, Christoph 
245 |a Determination of elastic (TI) anisotropy parameters from Logging-While-Drilling acoustic measurements - A feasibility study 
336 |b txt 
338 |b nc 
533 |a Online-Ausg.  |d 2022  |e Online-Ressource (Text)  |f Technische Universität Bergakademie Freiberg 
502 |b Dissertation  |c TU Bergakademie Freiberg  |d 2021 
505 |a 1 Introduction 1.1 Borehole acoustic configurations 1.2 Wave propagation in a fluid-filled borehole in the absence of a logging tool 1.3 Wave propagation in a fluid-filled borehole in the presence of a logging tool 1.4 Anisotropy 2 Theory 2.1 Stiffness and compliance tensor 2.1.1 Triclinic symmetry 2.1.2 Monoclinic symmetry 2.1.3 Orthotropic symmetry 2.1.4 Transverse isotropic (TI) symmetry 2.1.5 Isotropy 2.2 Reference frames 2.3 Seismic wave equations for a linear elastic, anisotropic medium 2.3.1 Basic equations 2.3.2 Integral transforms 2.3.3 Christoffel equation 2.3.4 Phase slowness surfaces 2.3.5 Group velocity 2.4 Solution in cylindrical coordinates for the borehole geometry 2.4.1 Special case: vertical transverse isotropy (VTI) 2.4.2 General case: triclinic symmetry 3 Finite-difference modeling of wave propagation in anisotropic media 3.1 Finite-difference method 3.2 Spatial finite-difference grids 3.2.1 Standard staggered grid 3.2.2 Lebedev grid 3.3 Heterogeneous media 3.4 Finite-difference properties and grid dispersion 3.5 Initial conditions 3.6 Boundary conditions 3.7 Parallelization 3.8 Finite-difference parameters 4 Wave propagation in fluid-filled boreholes surrounded by TI media 4.1 Vertical transverse isotropy (VTI) 4.1.1 Monopole excitation 4.1.2 Dipole excitation 4.1.3 Quadrupole excitation 4.1.4 Summary 4.2 Horizontal transverse isotropy (HTI) 4.2.1 Monopole excitation 4.2.2 Theory of cross-multipole shear wave splitting 4.2.3 Dipole excitation 4.2.4 Quadrupole excitation 4.2.5 Hexapole waves 4.2.6 Summary 4.3 Tilted transverse isotropy (TTI) 4.3.1 Monopole excitation 4.3.2 Dipole excitation 4.3.3 Quadrupole excitation 4.3.4 Summary 4.4 Anisotropy-induced mode contaminants 4.4.1 Vertical transverse isotropy (VTI) 4.4.2 Horizontal transverse isotropy (HTI) 4.4.3 Tilted transverse isotropy (TTI) 4.4.4 Summary 5 Inversion methods 5.1 Vertical transverse isotropy (VTI) 5.2 Horizontal transverse isotropy (HTI) 5.2.1 Inverse generalized Alford rotation 5.2.2 Inversion method based on dipole excitations 5.2.3 Inversion method based on quadrupole excitations 5.3 Tilted transverse isotropy (TTI) 5.4 Challenges in real measurements 5.4.1 Signal-to-noise ratio (SNR) 5.4.2 Tool eccentricity 6 Conclusions References List of Abbreviations and Symbols List of Figures List of Tables A Integral transforms A.1 Laplace transform A.2 Spatial Fourier transform A.3 Azimuthal Fourier transform A.4 Meijer transform B Stiffness and compliance tensor B.1 Rotation between reference frames B.2 Cylindrical coordinates C Christoffel equation C.1 Cartesian coordinates C.2 Cylindrical coordinates D Processing of borehole acoustic waveform array data D.1 Time-domain methods D.2 Frequency-domain methods D.2.1 Weighted spectral semblance method D.2.2 Modified matrix pencil method 
520 |a This thesis provides a feasibility study on the determination of formation anisotropy parameters from logging-while-drilling (LWD) borehole acoustic measurements. For this reason, the wave propagation in fluid-filled boreholes surrounded by transverse isotropic (TI) formations is investigated in great detail using the finite-difference method. While the focus is put on quadrupole waves, the sensitivities of monopole and flexural waves are evaluated as well. All three wave types are considered with/without the presence of an LWD tool. Moreover, anisotropy-induced mode contaminants are discussed for various TI configurations. In addition, the well-known plane wave Alford rotation has been generalized to cylindrical borehole waves of any order, except for the monopole. This formulation has been extended to allow for non-orthogonal multipole firings, and associated inversion methods have been developed to compute formation shear principal velocities and accompanying polarization directions, utilizing various LWD (cross-) quadrupole measurements. 
650 |a Anisotropy 
650 |a Borehole Acoustics 
650 |a Logging-While-Drilling 
650 |a Quadrupole 
650 |a Anisotropie 
650 |a Bohrlochakustik 
650 |a Quadrupol 
650 |a Bohrlochgeophysik 
650 |a Anisotroper Stoff 
650 |a Schallausbreitung 
650 |a Akustisches Wellenfeld 
650 |a Schallwelle 
650 |a Akustiklog 
650 |a Erdölspeicher 
650 |a Erdölgeologie 
650 |a Speichergestein 
650 |a Petrophysik 
650 |a Anisotropie 
650 |a Festgestein 
650 |a Bohrspülung 
650 |a Bohrlochmessung 
650 |a Geophysik 
650 |a Inversionsalgorithmus 
650 |a Wellenausbreitung 
655 |a Hochschulschrift  |2 gnd-content 
700 |a Buske, Stefan 
700 |a Buske, Stefan 
700 |a Geerits, Tim W. 
700 |a Tang, Xiaoming 
856 4 0 |q text/html  |u https://nbn-resolving.org/urn:nbn:de:bsz:105-qucosa2-769753  |z Online-Zugriff 
935 |c hs 
980 |a 105-qucosa2-769753  |b 22  |c sid-22-col-qucosa 
openURL url_ver=Z39.88-2004&ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fvufind.svn.sourceforge.net%3Agenerator&rft.title=Determination+of+elastic+%28TI%29+anisotropy+parameters+from+Logging-While-Drilling+acoustic+measurements+-+A+feasibility+study&rft.date=&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Adc&rft.creator=Demmler%2C+Christoph&rft.format=eBook&rft.language=English
SOLR
_version_ 1794756165914066944
author Demmler, Christoph
author2 Buske, Stefan, Buske, Stefan, Geerits, Tim W., Tang, Xiaoming
author2_role , , ,
author2_variant s b sb, s b sb, t w g tw twg, x t xt
author_facet Demmler, Christoph, Buske, Stefan, Buske, Stefan, Geerits, Tim W., Tang, Xiaoming
author_role
author_sort Demmler, Christoph
author_variant c d cd
building Library A
collection sid-22-col-qucosa
contents 1 Introduction 1.1 Borehole acoustic configurations 1.2 Wave propagation in a fluid-filled borehole in the absence of a logging tool 1.3 Wave propagation in a fluid-filled borehole in the presence of a logging tool 1.4 Anisotropy 2 Theory 2.1 Stiffness and compliance tensor 2.1.1 Triclinic symmetry 2.1.2 Monoclinic symmetry 2.1.3 Orthotropic symmetry 2.1.4 Transverse isotropic (TI) symmetry 2.1.5 Isotropy 2.2 Reference frames 2.3 Seismic wave equations for a linear elastic, anisotropic medium 2.3.1 Basic equations 2.3.2 Integral transforms 2.3.3 Christoffel equation 2.3.4 Phase slowness surfaces 2.3.5 Group velocity 2.4 Solution in cylindrical coordinates for the borehole geometry 2.4.1 Special case: vertical transverse isotropy (VTI) 2.4.2 General case: triclinic symmetry 3 Finite-difference modeling of wave propagation in anisotropic media 3.1 Finite-difference method 3.2 Spatial finite-difference grids 3.2.1 Standard staggered grid 3.2.2 Lebedev grid 3.3 Heterogeneous media 3.4 Finite-difference properties and grid dispersion 3.5 Initial conditions 3.6 Boundary conditions 3.7 Parallelization 3.8 Finite-difference parameters 4 Wave propagation in fluid-filled boreholes surrounded by TI media 4.1 Vertical transverse isotropy (VTI) 4.1.1 Monopole excitation 4.1.2 Dipole excitation 4.1.3 Quadrupole excitation 4.1.4 Summary 4.2 Horizontal transverse isotropy (HTI) 4.2.1 Monopole excitation 4.2.2 Theory of cross-multipole shear wave splitting 4.2.3 Dipole excitation 4.2.4 Quadrupole excitation 4.2.5 Hexapole waves 4.2.6 Summary 4.3 Tilted transverse isotropy (TTI) 4.3.1 Monopole excitation 4.3.2 Dipole excitation 4.3.3 Quadrupole excitation 4.3.4 Summary 4.4 Anisotropy-induced mode contaminants 4.4.1 Vertical transverse isotropy (VTI) 4.4.2 Horizontal transverse isotropy (HTI) 4.4.3 Tilted transverse isotropy (TTI) 4.4.4 Summary 5 Inversion methods 5.1 Vertical transverse isotropy (VTI) 5.2 Horizontal transverse isotropy (HTI) 5.2.1 Inverse generalized Alford rotation 5.2.2 Inversion method based on dipole excitations 5.2.3 Inversion method based on quadrupole excitations 5.3 Tilted transverse isotropy (TTI) 5.4 Challenges in real measurements 5.4.1 Signal-to-noise ratio (SNR) 5.4.2 Tool eccentricity 6 Conclusions References List of Abbreviations and Symbols List of Figures List of Tables A Integral transforms A.1 Laplace transform A.2 Spatial Fourier transform A.3 Azimuthal Fourier transform A.4 Meijer transform B Stiffness and compliance tensor B.1 Rotation between reference frames B.2 Cylindrical coordinates C Christoffel equation C.1 Cartesian coordinates C.2 Cylindrical coordinates D Processing of borehole acoustic waveform array data D.1 Time-domain methods D.2 Frequency-domain methods D.2.1 Weighted spectral semblance method D.2.2 Modified matrix pencil method, This thesis provides a feasibility study on the determination of formation anisotropy parameters from logging-while-drilling (LWD) borehole acoustic measurements. For this reason, the wave propagation in fluid-filled boreholes surrounded by transverse isotropic (TI) formations is investigated in great detail using the finite-difference method. While the focus is put on quadrupole waves, the sensitivities of monopole and flexural waves are evaluated as well. All three wave types are considered with/without the presence of an LWD tool. Moreover, anisotropy-induced mode contaminants are discussed for various TI configurations. In addition, the well-known plane wave Alford rotation has been generalized to cylindrical borehole waves of any order, except for the monopole. This formulation has been extended to allow for non-orthogonal multipole firings, and associated inversion methods have been developed to compute formation shear principal velocities and accompanying polarization directions, utilizing various LWD (cross-) quadrupole measurements.
dewey-full 550
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 550 - Earth sciences
dewey-raw 550
dewey-search 550
dewey-sort 3550
dewey-tens 550 - Earth sciences
facet_avail Online, Free
finc_class_facet Geographie, Geologie und Paläontologie
fincclass_txtF_mv science-geology
format eBook, Thesis
format_access_txtF_mv Thesis
format_de14 Thesis, Book, E-Book
format_de15 Thesis, Book, E-Book
format_del152 Buch, Buch
format_detail_txtF_mv text-online-monograph-independent-thesis
format_dezi4 e-Book
format_finc Book, E-Book, Thesis
format_legacy Thesis, Book
format_legacy_nrw Thesis, Book, E-Book
format_nrw Thesis, Book, E-Book
format_strict_txtF_mv E-Thesis
genre Hochschulschrift gnd-content
genre_facet Hochschulschrift
geogr_code not assigned
geogr_code_person not assigned
id 22-105-qucosa2-769753
illustrated Not Illustrated
imprint Online-Ausg., 2022
imprint_str_mv Online-Ausg.: 2022
institution DE-105, DE-Gla1, DE-Brt1, DE-D161, DE-540, DE-Pl11, DE-Rs1, DE-Bn3, DE-Zi4, DE-Zwi2, DE-D117, DE-Mh31, DE-D275, DE-Ch1, DE-15, DE-D13, DE-L242, DE-L229, DE-L328
is_hierarchy_id
is_hierarchy_title
language English
last_indexed 2024-03-28T08:00:58.877Z
match_str demmler2022determinationofelastictianisotropyparametersfromloggingwhiledrillingacousticmeasurementsafeasibilitystudy
mega_collection Qucosa
publishDateSort 2022
record_format marcfinc
record_id 105-qucosa2-769753
recordtype marcfinc
rvk_facet No subject assigned
score 17,054317
source_id 22
spelling Demmler, Christoph, Determination of elastic (TI) anisotropy parameters from Logging-While-Drilling acoustic measurements - A feasibility study, txt, nc, Online-Ausg. 2022 Online-Ressource (Text) Technische Universität Bergakademie Freiberg, Dissertation TU Bergakademie Freiberg 2021, 1 Introduction 1.1 Borehole acoustic configurations 1.2 Wave propagation in a fluid-filled borehole in the absence of a logging tool 1.3 Wave propagation in a fluid-filled borehole in the presence of a logging tool 1.4 Anisotropy 2 Theory 2.1 Stiffness and compliance tensor 2.1.1 Triclinic symmetry 2.1.2 Monoclinic symmetry 2.1.3 Orthotropic symmetry 2.1.4 Transverse isotropic (TI) symmetry 2.1.5 Isotropy 2.2 Reference frames 2.3 Seismic wave equations for a linear elastic, anisotropic medium 2.3.1 Basic equations 2.3.2 Integral transforms 2.3.3 Christoffel equation 2.3.4 Phase slowness surfaces 2.3.5 Group velocity 2.4 Solution in cylindrical coordinates for the borehole geometry 2.4.1 Special case: vertical transverse isotropy (VTI) 2.4.2 General case: triclinic symmetry 3 Finite-difference modeling of wave propagation in anisotropic media 3.1 Finite-difference method 3.2 Spatial finite-difference grids 3.2.1 Standard staggered grid 3.2.2 Lebedev grid 3.3 Heterogeneous media 3.4 Finite-difference properties and grid dispersion 3.5 Initial conditions 3.6 Boundary conditions 3.7 Parallelization 3.8 Finite-difference parameters 4 Wave propagation in fluid-filled boreholes surrounded by TI media 4.1 Vertical transverse isotropy (VTI) 4.1.1 Monopole excitation 4.1.2 Dipole excitation 4.1.3 Quadrupole excitation 4.1.4 Summary 4.2 Horizontal transverse isotropy (HTI) 4.2.1 Monopole excitation 4.2.2 Theory of cross-multipole shear wave splitting 4.2.3 Dipole excitation 4.2.4 Quadrupole excitation 4.2.5 Hexapole waves 4.2.6 Summary 4.3 Tilted transverse isotropy (TTI) 4.3.1 Monopole excitation 4.3.2 Dipole excitation 4.3.3 Quadrupole excitation 4.3.4 Summary 4.4 Anisotropy-induced mode contaminants 4.4.1 Vertical transverse isotropy (VTI) 4.4.2 Horizontal transverse isotropy (HTI) 4.4.3 Tilted transverse isotropy (TTI) 4.4.4 Summary 5 Inversion methods 5.1 Vertical transverse isotropy (VTI) 5.2 Horizontal transverse isotropy (HTI) 5.2.1 Inverse generalized Alford rotation 5.2.2 Inversion method based on dipole excitations 5.2.3 Inversion method based on quadrupole excitations 5.3 Tilted transverse isotropy (TTI) 5.4 Challenges in real measurements 5.4.1 Signal-to-noise ratio (SNR) 5.4.2 Tool eccentricity 6 Conclusions References List of Abbreviations and Symbols List of Figures List of Tables A Integral transforms A.1 Laplace transform A.2 Spatial Fourier transform A.3 Azimuthal Fourier transform A.4 Meijer transform B Stiffness and compliance tensor B.1 Rotation between reference frames B.2 Cylindrical coordinates C Christoffel equation C.1 Cartesian coordinates C.2 Cylindrical coordinates D Processing of borehole acoustic waveform array data D.1 Time-domain methods D.2 Frequency-domain methods D.2.1 Weighted spectral semblance method D.2.2 Modified matrix pencil method, This thesis provides a feasibility study on the determination of formation anisotropy parameters from logging-while-drilling (LWD) borehole acoustic measurements. For this reason, the wave propagation in fluid-filled boreholes surrounded by transverse isotropic (TI) formations is investigated in great detail using the finite-difference method. While the focus is put on quadrupole waves, the sensitivities of monopole and flexural waves are evaluated as well. All three wave types are considered with/without the presence of an LWD tool. Moreover, anisotropy-induced mode contaminants are discussed for various TI configurations. In addition, the well-known plane wave Alford rotation has been generalized to cylindrical borehole waves of any order, except for the monopole. This formulation has been extended to allow for non-orthogonal multipole firings, and associated inversion methods have been developed to compute formation shear principal velocities and accompanying polarization directions, utilizing various LWD (cross-) quadrupole measurements., Anisotropy, Borehole Acoustics, Logging-While-Drilling, Quadrupole, Anisotropie, Bohrlochakustik, Quadrupol, Bohrlochgeophysik, Anisotroper Stoff, Schallausbreitung, Akustisches Wellenfeld, Schallwelle, Akustiklog, Erdölspeicher, Erdölgeologie, Speichergestein, Petrophysik, Festgestein, Bohrspülung, Bohrlochmessung, Geophysik, Inversionsalgorithmus, Wellenausbreitung, Hochschulschrift gnd-content, Buske, Stefan, Geerits, Tim W., Tang, Xiaoming, text/html https://nbn-resolving.org/urn:nbn:de:bsz:105-qucosa2-769753 Online-Zugriff
spellingShingle Demmler, Christoph, Determination of elastic (TI) anisotropy parameters from Logging-While-Drilling acoustic measurements - A feasibility study, 1 Introduction 1.1 Borehole acoustic configurations 1.2 Wave propagation in a fluid-filled borehole in the absence of a logging tool 1.3 Wave propagation in a fluid-filled borehole in the presence of a logging tool 1.4 Anisotropy 2 Theory 2.1 Stiffness and compliance tensor 2.1.1 Triclinic symmetry 2.1.2 Monoclinic symmetry 2.1.3 Orthotropic symmetry 2.1.4 Transverse isotropic (TI) symmetry 2.1.5 Isotropy 2.2 Reference frames 2.3 Seismic wave equations for a linear elastic, anisotropic medium 2.3.1 Basic equations 2.3.2 Integral transforms 2.3.3 Christoffel equation 2.3.4 Phase slowness surfaces 2.3.5 Group velocity 2.4 Solution in cylindrical coordinates for the borehole geometry 2.4.1 Special case: vertical transverse isotropy (VTI) 2.4.2 General case: triclinic symmetry 3 Finite-difference modeling of wave propagation in anisotropic media 3.1 Finite-difference method 3.2 Spatial finite-difference grids 3.2.1 Standard staggered grid 3.2.2 Lebedev grid 3.3 Heterogeneous media 3.4 Finite-difference properties and grid dispersion 3.5 Initial conditions 3.6 Boundary conditions 3.7 Parallelization 3.8 Finite-difference parameters 4 Wave propagation in fluid-filled boreholes surrounded by TI media 4.1 Vertical transverse isotropy (VTI) 4.1.1 Monopole excitation 4.1.2 Dipole excitation 4.1.3 Quadrupole excitation 4.1.4 Summary 4.2 Horizontal transverse isotropy (HTI) 4.2.1 Monopole excitation 4.2.2 Theory of cross-multipole shear wave splitting 4.2.3 Dipole excitation 4.2.4 Quadrupole excitation 4.2.5 Hexapole waves 4.2.6 Summary 4.3 Tilted transverse isotropy (TTI) 4.3.1 Monopole excitation 4.3.2 Dipole excitation 4.3.3 Quadrupole excitation 4.3.4 Summary 4.4 Anisotropy-induced mode contaminants 4.4.1 Vertical transverse isotropy (VTI) 4.4.2 Horizontal transverse isotropy (HTI) 4.4.3 Tilted transverse isotropy (TTI) 4.4.4 Summary 5 Inversion methods 5.1 Vertical transverse isotropy (VTI) 5.2 Horizontal transverse isotropy (HTI) 5.2.1 Inverse generalized Alford rotation 5.2.2 Inversion method based on dipole excitations 5.2.3 Inversion method based on quadrupole excitations 5.3 Tilted transverse isotropy (TTI) 5.4 Challenges in real measurements 5.4.1 Signal-to-noise ratio (SNR) 5.4.2 Tool eccentricity 6 Conclusions References List of Abbreviations and Symbols List of Figures List of Tables A Integral transforms A.1 Laplace transform A.2 Spatial Fourier transform A.3 Azimuthal Fourier transform A.4 Meijer transform B Stiffness and compliance tensor B.1 Rotation between reference frames B.2 Cylindrical coordinates C Christoffel equation C.1 Cartesian coordinates C.2 Cylindrical coordinates D Processing of borehole acoustic waveform array data D.1 Time-domain methods D.2 Frequency-domain methods D.2.1 Weighted spectral semblance method D.2.2 Modified matrix pencil method, This thesis provides a feasibility study on the determination of formation anisotropy parameters from logging-while-drilling (LWD) borehole acoustic measurements. For this reason, the wave propagation in fluid-filled boreholes surrounded by transverse isotropic (TI) formations is investigated in great detail using the finite-difference method. While the focus is put on quadrupole waves, the sensitivities of monopole and flexural waves are evaluated as well. All three wave types are considered with/without the presence of an LWD tool. Moreover, anisotropy-induced mode contaminants are discussed for various TI configurations. In addition, the well-known plane wave Alford rotation has been generalized to cylindrical borehole waves of any order, except for the monopole. This formulation has been extended to allow for non-orthogonal multipole firings, and associated inversion methods have been developed to compute formation shear principal velocities and accompanying polarization directions, utilizing various LWD (cross-) quadrupole measurements., Anisotropy, Borehole Acoustics, Logging-While-Drilling, Quadrupole, Anisotropie, Bohrlochakustik, Quadrupol, Bohrlochgeophysik, Anisotroper Stoff, Schallausbreitung, Akustisches Wellenfeld, Schallwelle, Akustiklog, Erdölspeicher, Erdölgeologie, Speichergestein, Petrophysik, Festgestein, Bohrspülung, Bohrlochmessung, Geophysik, Inversionsalgorithmus, Wellenausbreitung, Hochschulschrift
title Determination of elastic (TI) anisotropy parameters from Logging-While-Drilling acoustic measurements - A feasibility study
title_auth Determination of elastic (TI) anisotropy parameters from Logging-While-Drilling acoustic measurements - A feasibility study
title_full Determination of elastic (TI) anisotropy parameters from Logging-While-Drilling acoustic measurements - A feasibility study
title_fullStr Determination of elastic (TI) anisotropy parameters from Logging-While-Drilling acoustic measurements - A feasibility study
title_full_unstemmed Determination of elastic (TI) anisotropy parameters from Logging-While-Drilling acoustic measurements - A feasibility study
title_short Determination of elastic (TI) anisotropy parameters from Logging-While-Drilling acoustic measurements - A feasibility study
title_sort determination of elastic (ti) anisotropy parameters from logging-while-drilling acoustic measurements - a feasibility study
title_unstemmed Determination of elastic (TI) anisotropy parameters from Logging-While-Drilling acoustic measurements - A feasibility study
topic Anisotropy, Borehole Acoustics, Logging-While-Drilling, Quadrupole, Anisotropie, Bohrlochakustik, Quadrupol, Bohrlochgeophysik, Anisotroper Stoff, Schallausbreitung, Akustisches Wellenfeld, Schallwelle, Akustiklog, Erdölspeicher, Erdölgeologie, Speichergestein, Petrophysik, Festgestein, Bohrspülung, Bohrlochmessung, Geophysik, Inversionsalgorithmus, Wellenausbreitung, Hochschulschrift
topic_facet Anisotropy, Borehole Acoustics, Logging-While-Drilling, Quadrupole, Anisotropie, Bohrlochakustik, Quadrupol, Bohrlochgeophysik, Anisotroper Stoff, Schallausbreitung, Akustisches Wellenfeld, Schallwelle, Akustiklog, Erdölspeicher, Erdölgeologie, Speichergestein, Petrophysik, Festgestein, Bohrspülung, Bohrlochmessung, Geophysik, Inversionsalgorithmus, Wellenausbreitung, Hochschulschrift
url https://nbn-resolving.org/urn:nbn:de:bsz:105-qucosa2-769753
urn urn:nbn:de:bsz:105-qucosa2-769753
work_keys_str_mv AT demmlerchristoph determinationofelastictianisotropyparametersfromloggingwhiledrillingacousticmeasurementsafeasibilitystudy, AT buskestefan determinationofelastictianisotropyparametersfromloggingwhiledrillingacousticmeasurementsafeasibilitystudy, AT geeritstimw determinationofelastictianisotropyparametersfromloggingwhiledrillingacousticmeasurementsafeasibilitystudy, AT tangxiaoming determinationofelastictianisotropyparametersfromloggingwhiledrillingacousticmeasurementsafeasibilitystudy