SOLR
_version_ |
1809876304699326464 |
author |
Ritter, Marc |
author2 |
Eibl, Maximilian, Hamker, Fred, Eibl, Maximilian |
author2_role |
, , |
author2_variant |
m e me, f h fh, m e me |
author_facet |
Ritter, Marc, Eibl, Maximilian, Hamker, Fred, Eibl, Maximilian |
author_role |
|
author_sort |
Ritter, Marc |
author_variant |
m r mr |
building |
Library A |
collection |
sid-22-col-qucosa |
contents |
1. Motivation . . . 1 1.1. Einordnung in den Retrievalprozess . . . . . . . . . . . . . . . . . . . 2 1.2. Infrastruktur zur Optimierung von Verfahren zur Videoanalyse . . . . 4 1.3. Herausforderungen der Bilderkennung . . . . . . . . . . . . . . . . . . 6 1.4. Wissenschaftliche Ergebnisse dieser Arbeit . . . . . . . . . . . . . . . 9 1.5. Kapitelübersicht . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2. Methoden und Strategien der Videoanalyse . . . 15 2.1. Fachgebiete der Bilderkennung . . . . . . . . . . . . . . . . . . . . . . 16 2.1.1. Maschinelles Lernen . . . . . . . . . . . . . . . . . . . . . . . 17 2.1.2. Maschinelles Sehen . . . . . . . . . . . . . . . . . . . . . . . . 18 2.1.3. Computer Vision . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.1.4. Mustererkennung . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.2. Strukturelle Analyse von generischen Mustererkennungsystemen . . . 22 2.2.1. Datenakquisition . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.2.2. Musteranalyse . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.2.3. Musterklassifizierung . . . . . . . . . . . . . . . . . . . . . . . 26 2.2.4. Bilderkennungssysteme . . . . . . . . . . . . . . . . . . . . . . 28 2.2.5. Wissensentdeckung in Datenbanken . . . . . . . . . . . . . . . 28 2.3. Bilderkennung in der inhaltsbasierten Bildsuche . . . . . . . . . . . . 29 2.3.1. Paradigmen . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.3.2. Bildsignaturen . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.3.3. Signaturtypen . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.3.4. Lerntechniken . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 2.4. Holistische Bilderkennungssysteme im Überblick . . . . . . . . . . . . 44 2.4.1. Ein segment- und konturbasiertes CBIR-System . . . . . . . . 45 2.4.2. Biologisch inspirierte Systeme . . . . . . . . . . . . . . . . . . 48 2.4.3. Lernen aus wenigen Beispielen . . . . . . . . . . . . . . . . . . 51 2.5. Objekterkennung im Szenenkontext . . . . . . . . . . . . . . . . . . . 55 2.6. Aktuelle Grenzen der Muster- und Objekterkennung . . . . . . . . . . 60 2.7. Konzept eines generischen Workflows zur Objekterkennung in Videos . . . 64 2.7.1. Strukturelle Analyse . . . . . . . . . . . . . . . . . . . . . . . 64 2.7.2. Inhaltliche Analyse . . . . . . . . . . . . . . . . . . . . . . . . 66 2.7.3. Erweiterung des klassischen Paradigmas zur Objekterkennung . . . 67 2.7.4. Anwendungsdomänen . . . . . . . . . . . . . . . . . . . . . . . 68 2.8. Fazit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 3. Systemarchitektur zur Optimierung von Bilderkennungsverfahren . . . 71 3.1. Vorüberlegungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 3.1.1. Softwaretechnische Anforderungen . . . . . . . . . . . . . . . . 72 3.1.2. Bewertung der Systemleistung . . . . . . . . . . . . . . . . . . 75 3.1.3. Ein- und Ausgabe . . . . . . . . . . . . . . . . . . . . . . . . . 89 3.1.4. Modellierung von Domänenwissen . . . . . . . . . . . . . . . . 90 3.1.5. Diskriminierbarkeit von Merkmalen . . . . . . . . . . . . . . . 92 3.1.6. Zusammenfassende Darstellung . . . . . . . . . . . . . . . . . 95 3.2. Architektur des Gesamtsystems . . . . . . . . . . . . . . . . . . . . . 95 3.3. Struktureller Aufbau von AMOPA . . . . . . . . . . . . . . . . . . . 97 3.3.1. Verwendung von Prozessketten . . . . . . . . . . . . . . . . . 101 3.3.2. Bild- und Videoverarbeitung . . . . . . . . . . . . . . . . . . . 106 3.4. Annotation von Bildern und Videos . . . . . . . . . . . . . . . . . . . 107 3.4.1. Ein Annotationswerkzeug für Videos . . . . . . . . . . . . . . 108 3.4.2. Ein Ansatz zu Annotation, Klassifikation und Evaluation . . . 111 3.5. Fazit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 4. Videosegmentierung . . . 119 4.1. Schnitterkennung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 4.1.1. Struktureller Aufbau von Videos . . . . . . . . . . . . . . . . 121 4.1.2. Klassische Verfahren . . . . . . . . . . . . . . . . . . . . . . . 124 4.1.3. TRECVid: Evaluationskampagne und Datensätze . . . . . . . 125 4.1.4. Das Verfahren von AT&T . . . . . . . . . . . . . . . . . . . . 130 4.2. Schnittkomposition und Ähnlichkeit . . . . . . . . . . . . . . . . . . . 137 4.2.1. Dominant-Color-Deskriptor . . . . . . . . . . . . . . . . . . . 140 4.2.2. Color-Layout-Deskriptor . . . . . . . . . . . . . . . . . . . . . 140 4.2.3. Scalable-Color-Deskriptor . . . . . . . . . . . . . . . . . . . . 141 4.2.4. Edge-Histogram-Deskriptor . . . . . . . . . . . . . . . . . . . 142 4.3. Konzeption und Implementierung . . . . . . . . . . . . . . . . . . . . 143 4.3.1. Einbindung in das Prozesskonzept von AMOPA . . . . . . . . 144 4.3.2. Auswahl des Farbraums . . . . . . . . . . . . . . . . . . . . . 148 4.3.3. Bewegungsanalyse . . . . . . . . . . . . . . . . . . . . . . . . 151 4.3.4. Bestimmung und Verifikation von Schnittkandidaten . . . . . 159 4.3.5. Ergebnisdarstellung und -speicherung . . . . . . . . . . . . . . 171 4.4. Evaluation und Optimierung der harten Schnitterkennung . . . . . . 173 4.4.1. Die TRECVid Evaluationsmethodologie . . . . . . . . . . . . 174 4.4.2. Optimierung von Recall und Laufzeit . . . . . . . . . . . . . . 176 4.4.3. Optimierung der Precision . . . . . . . . . . . . . . . . . . . . 181 4.4.4. Validierung der Ergebnisse . . . . . . . . . . . . . . . . . . . . 183 4.5. Fazit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 5. Gesichtsdetektion . . . 187 5.1. Stand der Technik . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 5.1.1. Verfahrensklassen und Datensätze . . . . . . . . . . . . . . . . 189 5.1.2. Boosting-Verfahren . . . . . . . . . . . . . . . . . . . . . . . . 192 5.2. Realisierung eines Systems zur Musterklassifizierung . . . . . . . . . . 200 5.2.1. Trainingsphase . . . . . . . . . . . . . . . . . . . . . . . . . . 201 5.2.2. Klassifikation mit Hilfe von Detektorketten . . . . . . . . . . . 203 5.2.3. Erlernen eines geboosteten Gesichtsklassifikators . . . . . . . . 206 5.2.4. Exkurs: Gesichtslokalisation mittels Schwarmintelligenz . . . . 210 5.3. Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214 5.3.1. Datensatz TS100 . . . . . . . . . . . . . . . . . . . . . . . . . 214 5.3.2. Annotation von Gesichtern in unbeschränkten Domänen . . . 217 5.3.3. Evaluationsmethodik und Ergebnisdiskussion . . . . . . . . . . 218 5.4. Fazit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 6. Erkennung weiterer Objektklassen am Beispiel von Personen . . . 229 6.1. Merkmale für die Personenerkennung . . . . . . . . . . . . . . . . . . 230 6.2. Datensätze . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 6.3. Evaluation von Merkmalen auf verschiedenen Datensätzen . . . . . . 234 6.3.1. Evaluationsmethodik . . . . . . . . . . . . . . . . . . . . . . . 235 6.3.2. Auswertung und Ergebnisdiskussion . . . . . . . . . . . . . . . 238 6.4. Evaluation eines kaskadierten Klassifikationssystems . . . . . . . . . . 242 6.4.1. Systemarchitektur und Training . . . . . . . . . . . . . . . . . 242 6.4.2. Klassifikation und Evaluation . . . . . . . . . . . . . . . . . . 244 6.5. Fazit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248 7. Zusammenfassung und Ausblick . . . 251 Anhang . . . 257 A. Übersicht zu den Experimenten zur Schnitterkennung . . . . . . . . . 259 A.1. Konfiguration und Laufzeiten der Experimente . . . . . . . . . 259 A.2. Stufe I: Farbraum und Bewegungsschätzung . . . . . . . . . . 261 A.3. Stufe II: Optimierung der Precision . . . . . . . . . . . . . . . 261 A.4. Echtzeitfähige Datenvisualisierung . . . . . . . . . . . . . . . . 267 A.5. Visualisierung einzelner Komponenten an Beispielen . . . . . . 269 B. Ergänzungen zu den Experimenten zur Gesichtsdetektion . . . . . . . 273 B.1. Trainingsverlauf des Klassifikators TUC FD . . . . . . . . . . 273 B.2. Übersicht zu den Mindestdetektionsgrößen auf TS100 . . . . . 273 B.3. Visualisierung der Detektionen auf TS100 . . . . . . . . . . . 279 C. Systemkonfiguration . . . . . . . . . . . . . . . . . . . . . . . . . . . 281 Verzeichnis der Abkürzungen und Begriffe . . . v Literaturverzeichnis . . . vii |
dewey-full |
000 |
dewey-hundreds |
000 - Computer science, information, general works |
dewey-ones |
000 - Computer science, information, general works |
dewey-raw |
000 |
dewey-search |
000 |
dewey-sort |
0 |
dewey-tens |
000 - Computer science, information, general works |
facet_avail |
Online, Free |
finc_class_facet |
Informatik |
fincclass_txtF_mv |
information-knowledge |
format |
eBook, Thesis |
format_access_txtF_mv |
Thesis |
format_de14 |
Thesis, Book, E-Book |
format_de15 |
Thesis, Book, E-Book |
format_del152 |
Buch, Buch |
format_detail_txtF_mv |
text-online-monograph-independent-thesis |
format_dezi4 |
e-Book |
format_finc |
Book, E-Book, Thesis |
format_legacy |
Thesis, Book |
format_legacy_nrw |
Thesis, Book, E-Book |
format_nrw |
Thesis, Book, E-Book |
format_strict_txtF_mv |
E-Thesis |
genre |
Hochschulschrift gnd-content |
genre_facet |
Hochschulschrift |
geogr_code |
not assigned |
geogr_code_person |
not assigned |
id |
22-ch1-qucosa-133517 |
illustrated |
Not Illustrated |
imprint |
Chemnitz, Universitätsverlag Chemnitz |
imprint_str_mv |
Online-Ausg.: 2015 |
institution |
DE-105, DE-Gla1, DE-Brt1, DE-D161, DE-540, DE-Pl11, DE-Rs1, DE-Bn3, DE-Zi4, DE-Zwi2, DE-D117, DE-Mh31, DE-D275, DE-Ch1, DE-15, DE-D13, DE-L242, DE-L229, DE-L328 |
is_hierarchy_id |
|
is_hierarchy_title |
|
language |
German |
last_indexed |
2024-09-11T05:29:06.070Z |
match_str |
ritter2015optimierungvonalgorithmenzurvideoanalyse |
mega_collection |
Qucosa |
publishDate |
|
publishDateSort |
2015 |
publishPlace |
Chemnitz |
publisher |
Universitätsverlag Chemnitz |
record_format |
marcfinc |
record_id |
ch1-qucosa-133517 |
recordtype |
marcfinc |
rvk_facet |
No subject assigned |
series2 |
Wissenschaftliche Schriftenreihe Dissertationen der Medieninformatik ; Band 3 |
source_id |
22 |
spelling |
Ritter, Marc, Optimierung von Algorithmen zur Videoanalyse, Chemnitz Universitätsverlag Chemnitz, txt, nc, Wissenschaftliche Schriftenreihe Dissertationen der Medieninformatik Band 3, Online-Ausg. 2015 Online-Ressource (Text) Universitätsbibliothek Chemnitz, Dissertation 2013, 1. Motivation . . . 1 1.1. Einordnung in den Retrievalprozess . . . . . . . . . . . . . . . . . . . 2 1.2. Infrastruktur zur Optimierung von Verfahren zur Videoanalyse . . . . 4 1.3. Herausforderungen der Bilderkennung . . . . . . . . . . . . . . . . . . 6 1.4. Wissenschaftliche Ergebnisse dieser Arbeit . . . . . . . . . . . . . . . 9 1.5. Kapitelübersicht . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2. Methoden und Strategien der Videoanalyse . . . 15 2.1. Fachgebiete der Bilderkennung . . . . . . . . . . . . . . . . . . . . . . 16 2.1.1. Maschinelles Lernen . . . . . . . . . . . . . . . . . . . . . . . 17 2.1.2. Maschinelles Sehen . . . . . . . . . . . . . . . . . . . . . . . . 18 2.1.3. Computer Vision . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.1.4. Mustererkennung . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.2. Strukturelle Analyse von generischen Mustererkennungsystemen . . . 22 2.2.1. Datenakquisition . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.2.2. Musteranalyse . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.2.3. Musterklassifizierung . . . . . . . . . . . . . . . . . . . . . . . 26 2.2.4. Bilderkennungssysteme . . . . . . . . . . . . . . . . . . . . . . 28 2.2.5. Wissensentdeckung in Datenbanken . . . . . . . . . . . . . . . 28 2.3. Bilderkennung in der inhaltsbasierten Bildsuche . . . . . . . . . . . . 29 2.3.1. Paradigmen . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.3.2. Bildsignaturen . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.3.3. Signaturtypen . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.3.4. Lerntechniken . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 2.4. Holistische Bilderkennungssysteme im Überblick . . . . . . . . . . . . 44 2.4.1. Ein segment- und konturbasiertes CBIR-System . . . . . . . . 45 2.4.2. Biologisch inspirierte Systeme . . . . . . . . . . . . . . . . . . 48 2.4.3. Lernen aus wenigen Beispielen . . . . . . . . . . . . . . . . . . 51 2.5. Objekterkennung im Szenenkontext . . . . . . . . . . . . . . . . . . . 55 2.6. Aktuelle Grenzen der Muster- und Objekterkennung . . . . . . . . . . 60 2.7. Konzept eines generischen Workflows zur Objekterkennung in Videos . . . 64 2.7.1. Strukturelle Analyse . . . . . . . . . . . . . . . . . . . . . . . 64 2.7.2. Inhaltliche Analyse . . . . . . . . . . . . . . . . . . . . . . . . 66 2.7.3. Erweiterung des klassischen Paradigmas zur Objekterkennung . . . 67 2.7.4. Anwendungsdomänen . . . . . . . . . . . . . . . . . . . . . . . 68 2.8. Fazit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 3. Systemarchitektur zur Optimierung von Bilderkennungsverfahren . . . 71 3.1. Vorüberlegungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 3.1.1. Softwaretechnische Anforderungen . . . . . . . . . . . . . . . . 72 3.1.2. Bewertung der Systemleistung . . . . . . . . . . . . . . . . . . 75 3.1.3. Ein- und Ausgabe . . . . . . . . . . . . . . . . . . . . . . . . . 89 3.1.4. Modellierung von Domänenwissen . . . . . . . . . . . . . . . . 90 3.1.5. Diskriminierbarkeit von Merkmalen . . . . . . . . . . . . . . . 92 3.1.6. Zusammenfassende Darstellung . . . . . . . . . . . . . . . . . 95 3.2. Architektur des Gesamtsystems . . . . . . . . . . . . . . . . . . . . . 95 3.3. Struktureller Aufbau von AMOPA . . . . . . . . . . . . . . . . . . . 97 3.3.1. Verwendung von Prozessketten . . . . . . . . . . . . . . . . . 101 3.3.2. Bild- und Videoverarbeitung . . . . . . . . . . . . . . . . . . . 106 3.4. Annotation von Bildern und Videos . . . . . . . . . . . . . . . . . . . 107 3.4.1. Ein Annotationswerkzeug für Videos . . . . . . . . . . . . . . 108 3.4.2. Ein Ansatz zu Annotation, Klassifikation und Evaluation . . . 111 3.5. Fazit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 4. Videosegmentierung . . . 119 4.1. Schnitterkennung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 4.1.1. Struktureller Aufbau von Videos . . . . . . . . . . . . . . . . 121 4.1.2. Klassische Verfahren . . . . . . . . . . . . . . . . . . . . . . . 124 4.1.3. TRECVid: Evaluationskampagne und Datensätze . . . . . . . 125 4.1.4. Das Verfahren von AT&T . . . . . . . . . . . . . . . . . . . . 130 4.2. Schnittkomposition und Ähnlichkeit . . . . . . . . . . . . . . . . . . . 137 4.2.1. Dominant-Color-Deskriptor . . . . . . . . . . . . . . . . . . . 140 4.2.2. Color-Layout-Deskriptor . . . . . . . . . . . . . . . . . . . . . 140 4.2.3. Scalable-Color-Deskriptor . . . . . . . . . . . . . . . . . . . . 141 4.2.4. Edge-Histogram-Deskriptor . . . . . . . . . . . . . . . . . . . 142 4.3. Konzeption und Implementierung . . . . . . . . . . . . . . . . . . . . 143 4.3.1. Einbindung in das Prozesskonzept von AMOPA . . . . . . . . 144 4.3.2. Auswahl des Farbraums . . . . . . . . . . . . . . . . . . . . . 148 4.3.3. Bewegungsanalyse . . . . . . . . . . . . . . . . . . . . . . . . 151 4.3.4. Bestimmung und Verifikation von Schnittkandidaten . . . . . 159 4.3.5. Ergebnisdarstellung und -speicherung . . . . . . . . . . . . . . 171 4.4. Evaluation und Optimierung der harten Schnitterkennung . . . . . . 173 4.4.1. Die TRECVid Evaluationsmethodologie . . . . . . . . . . . . 174 4.4.2. Optimierung von Recall und Laufzeit . . . . . . . . . . . . . . 176 4.4.3. Optimierung der Precision . . . . . . . . . . . . . . . . . . . . 181 4.4.4. Validierung der Ergebnisse . . . . . . . . . . . . . . . . . . . . 183 4.5. Fazit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 5. Gesichtsdetektion . . . 187 5.1. Stand der Technik . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 5.1.1. Verfahrensklassen und Datensätze . . . . . . . . . . . . . . . . 189 5.1.2. Boosting-Verfahren . . . . . . . . . . . . . . . . . . . . . . . . 192 5.2. Realisierung eines Systems zur Musterklassifizierung . . . . . . . . . . 200 5.2.1. Trainingsphase . . . . . . . . . . . . . . . . . . . . . . . . . . 201 5.2.2. Klassifikation mit Hilfe von Detektorketten . . . . . . . . . . . 203 5.2.3. Erlernen eines geboosteten Gesichtsklassifikators . . . . . . . . 206 5.2.4. Exkurs: Gesichtslokalisation mittels Schwarmintelligenz . . . . 210 5.3. Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214 5.3.1. Datensatz TS100 . . . . . . . . . . . . . . . . . . . . . . . . . 214 5.3.2. Annotation von Gesichtern in unbeschränkten Domänen . . . 217 5.3.3. Evaluationsmethodik und Ergebnisdiskussion . . . . . . . . . . 218 5.4. Fazit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 6. Erkennung weiterer Objektklassen am Beispiel von Personen . . . 229 6.1. Merkmale für die Personenerkennung . . . . . . . . . . . . . . . . . . 230 6.2. Datensätze . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 6.3. Evaluation von Merkmalen auf verschiedenen Datensätzen . . . . . . 234 6.3.1. Evaluationsmethodik . . . . . . . . . . . . . . . . . . . . . . . 235 6.3.2. Auswertung und Ergebnisdiskussion . . . . . . . . . . . . . . . 238 6.4. Evaluation eines kaskadierten Klassifikationssystems . . . . . . . . . . 242 6.4.1. Systemarchitektur und Training . . . . . . . . . . . . . . . . . 242 6.4.2. Klassifikation und Evaluation . . . . . . . . . . . . . . . . . . 244 6.5. Fazit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248 7. Zusammenfassung und Ausblick . . . 251 Anhang . . . 257 A. Übersicht zu den Experimenten zur Schnitterkennung . . . . . . . . . 259 A.1. Konfiguration und Laufzeiten der Experimente . . . . . . . . . 259 A.2. Stufe I: Farbraum und Bewegungsschätzung . . . . . . . . . . 261 A.3. Stufe II: Optimierung der Precision . . . . . . . . . . . . . . . 261 A.4. Echtzeitfähige Datenvisualisierung . . . . . . . . . . . . . . . . 267 A.5. Visualisierung einzelner Komponenten an Beispielen . . . . . . 269 B. Ergänzungen zu den Experimenten zur Gesichtsdetektion . . . . . . . 273 B.1. Trainingsverlauf des Klassifikators TUC FD . . . . . . . . . . 273 B.2. Übersicht zu den Mindestdetektionsgrößen auf TS100 . . . . . 273 B.3. Visualisierung der Detektionen auf TS100 . . . . . . . . . . . 279 C. Systemkonfiguration . . . . . . . . . . . . . . . . . . . . . . . . . . . 281 Verzeichnis der Abkürzungen und Begriffe . . . v Literaturverzeichnis . . . vii, Videoanalyse, Objektdetektion, Schnitterkennung, Gesichtsdetektion, Fußgängererkennung, Holistische Softwarearchitektur, Video Analysis, Object Detection, Shot Detection, Face Detection, Pedestrian Detection, Holistic Software Architecture, Machine Learning, Boosting, Maschinelles Lernen, Hochschulschrift gnd-content, Eibl, Maximilian, Hamker, Fred, text/html https://nbn-resolving.org/urn:nbn:de:bsz:ch1-qucosa-133517 Online-Zugriff |
spellingShingle |
Ritter, Marc, Optimierung von Algorithmen zur Videoanalyse, 1. Motivation . . . 1 1.1. Einordnung in den Retrievalprozess . . . . . . . . . . . . . . . . . . . 2 1.2. Infrastruktur zur Optimierung von Verfahren zur Videoanalyse . . . . 4 1.3. Herausforderungen der Bilderkennung . . . . . . . . . . . . . . . . . . 6 1.4. Wissenschaftliche Ergebnisse dieser Arbeit . . . . . . . . . . . . . . . 9 1.5. Kapitelübersicht . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2. Methoden und Strategien der Videoanalyse . . . 15 2.1. Fachgebiete der Bilderkennung . . . . . . . . . . . . . . . . . . . . . . 16 2.1.1. Maschinelles Lernen . . . . . . . . . . . . . . . . . . . . . . . 17 2.1.2. Maschinelles Sehen . . . . . . . . . . . . . . . . . . . . . . . . 18 2.1.3. Computer Vision . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.1.4. Mustererkennung . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.2. Strukturelle Analyse von generischen Mustererkennungsystemen . . . 22 2.2.1. Datenakquisition . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.2.2. Musteranalyse . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.2.3. Musterklassifizierung . . . . . . . . . . . . . . . . . . . . . . . 26 2.2.4. Bilderkennungssysteme . . . . . . . . . . . . . . . . . . . . . . 28 2.2.5. Wissensentdeckung in Datenbanken . . . . . . . . . . . . . . . 28 2.3. Bilderkennung in der inhaltsbasierten Bildsuche . . . . . . . . . . . . 29 2.3.1. Paradigmen . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.3.2. Bildsignaturen . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.3.3. Signaturtypen . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.3.4. Lerntechniken . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 2.4. Holistische Bilderkennungssysteme im Überblick . . . . . . . . . . . . 44 2.4.1. Ein segment- und konturbasiertes CBIR-System . . . . . . . . 45 2.4.2. Biologisch inspirierte Systeme . . . . . . . . . . . . . . . . . . 48 2.4.3. Lernen aus wenigen Beispielen . . . . . . . . . . . . . . . . . . 51 2.5. Objekterkennung im Szenenkontext . . . . . . . . . . . . . . . . . . . 55 2.6. Aktuelle Grenzen der Muster- und Objekterkennung . . . . . . . . . . 60 2.7. Konzept eines generischen Workflows zur Objekterkennung in Videos . . . 64 2.7.1. Strukturelle Analyse . . . . . . . . . . . . . . . . . . . . . . . 64 2.7.2. Inhaltliche Analyse . . . . . . . . . . . . . . . . . . . . . . . . 66 2.7.3. Erweiterung des klassischen Paradigmas zur Objekterkennung . . . 67 2.7.4. Anwendungsdomänen . . . . . . . . . . . . . . . . . . . . . . . 68 2.8. Fazit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 3. Systemarchitektur zur Optimierung von Bilderkennungsverfahren . . . 71 3.1. Vorüberlegungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 3.1.1. Softwaretechnische Anforderungen . . . . . . . . . . . . . . . . 72 3.1.2. Bewertung der Systemleistung . . . . . . . . . . . . . . . . . . 75 3.1.3. Ein- und Ausgabe . . . . . . . . . . . . . . . . . . . . . . . . . 89 3.1.4. Modellierung von Domänenwissen . . . . . . . . . . . . . . . . 90 3.1.5. Diskriminierbarkeit von Merkmalen . . . . . . . . . . . . . . . 92 3.1.6. Zusammenfassende Darstellung . . . . . . . . . . . . . . . . . 95 3.2. Architektur des Gesamtsystems . . . . . . . . . . . . . . . . . . . . . 95 3.3. Struktureller Aufbau von AMOPA . . . . . . . . . . . . . . . . . . . 97 3.3.1. Verwendung von Prozessketten . . . . . . . . . . . . . . . . . 101 3.3.2. Bild- und Videoverarbeitung . . . . . . . . . . . . . . . . . . . 106 3.4. Annotation von Bildern und Videos . . . . . . . . . . . . . . . . . . . 107 3.4.1. Ein Annotationswerkzeug für Videos . . . . . . . . . . . . . . 108 3.4.2. Ein Ansatz zu Annotation, Klassifikation und Evaluation . . . 111 3.5. Fazit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 4. Videosegmentierung . . . 119 4.1. Schnitterkennung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 4.1.1. Struktureller Aufbau von Videos . . . . . . . . . . . . . . . . 121 4.1.2. Klassische Verfahren . . . . . . . . . . . . . . . . . . . . . . . 124 4.1.3. TRECVid: Evaluationskampagne und Datensätze . . . . . . . 125 4.1.4. Das Verfahren von AT&T . . . . . . . . . . . . . . . . . . . . 130 4.2. Schnittkomposition und Ähnlichkeit . . . . . . . . . . . . . . . . . . . 137 4.2.1. Dominant-Color-Deskriptor . . . . . . . . . . . . . . . . . . . 140 4.2.2. Color-Layout-Deskriptor . . . . . . . . . . . . . . . . . . . . . 140 4.2.3. Scalable-Color-Deskriptor . . . . . . . . . . . . . . . . . . . . 141 4.2.4. Edge-Histogram-Deskriptor . . . . . . . . . . . . . . . . . . . 142 4.3. Konzeption und Implementierung . . . . . . . . . . . . . . . . . . . . 143 4.3.1. Einbindung in das Prozesskonzept von AMOPA . . . . . . . . 144 4.3.2. Auswahl des Farbraums . . . . . . . . . . . . . . . . . . . . . 148 4.3.3. Bewegungsanalyse . . . . . . . . . . . . . . . . . . . . . . . . 151 4.3.4. Bestimmung und Verifikation von Schnittkandidaten . . . . . 159 4.3.5. Ergebnisdarstellung und -speicherung . . . . . . . . . . . . . . 171 4.4. Evaluation und Optimierung der harten Schnitterkennung . . . . . . 173 4.4.1. Die TRECVid Evaluationsmethodologie . . . . . . . . . . . . 174 4.4.2. Optimierung von Recall und Laufzeit . . . . . . . . . . . . . . 176 4.4.3. Optimierung der Precision . . . . . . . . . . . . . . . . . . . . 181 4.4.4. Validierung der Ergebnisse . . . . . . . . . . . . . . . . . . . . 183 4.5. Fazit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 5. Gesichtsdetektion . . . 187 5.1. Stand der Technik . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 5.1.1. Verfahrensklassen und Datensätze . . . . . . . . . . . . . . . . 189 5.1.2. Boosting-Verfahren . . . . . . . . . . . . . . . . . . . . . . . . 192 5.2. Realisierung eines Systems zur Musterklassifizierung . . . . . . . . . . 200 5.2.1. Trainingsphase . . . . . . . . . . . . . . . . . . . . . . . . . . 201 5.2.2. Klassifikation mit Hilfe von Detektorketten . . . . . . . . . . . 203 5.2.3. Erlernen eines geboosteten Gesichtsklassifikators . . . . . . . . 206 5.2.4. Exkurs: Gesichtslokalisation mittels Schwarmintelligenz . . . . 210 5.3. Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214 5.3.1. Datensatz TS100 . . . . . . . . . . . . . . . . . . . . . . . . . 214 5.3.2. Annotation von Gesichtern in unbeschränkten Domänen . . . 217 5.3.3. Evaluationsmethodik und Ergebnisdiskussion . . . . . . . . . . 218 5.4. Fazit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 6. Erkennung weiterer Objektklassen am Beispiel von Personen . . . 229 6.1. Merkmale für die Personenerkennung . . . . . . . . . . . . . . . . . . 230 6.2. Datensätze . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 6.3. Evaluation von Merkmalen auf verschiedenen Datensätzen . . . . . . 234 6.3.1. Evaluationsmethodik . . . . . . . . . . . . . . . . . . . . . . . 235 6.3.2. Auswertung und Ergebnisdiskussion . . . . . . . . . . . . . . . 238 6.4. Evaluation eines kaskadierten Klassifikationssystems . . . . . . . . . . 242 6.4.1. Systemarchitektur und Training . . . . . . . . . . . . . . . . . 242 6.4.2. Klassifikation und Evaluation . . . . . . . . . . . . . . . . . . 244 6.5. Fazit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248 7. Zusammenfassung und Ausblick . . . 251 Anhang . . . 257 A. Übersicht zu den Experimenten zur Schnitterkennung . . . . . . . . . 259 A.1. Konfiguration und Laufzeiten der Experimente . . . . . . . . . 259 A.2. Stufe I: Farbraum und Bewegungsschätzung . . . . . . . . . . 261 A.3. Stufe II: Optimierung der Precision . . . . . . . . . . . . . . . 261 A.4. Echtzeitfähige Datenvisualisierung . . . . . . . . . . . . . . . . 267 A.5. Visualisierung einzelner Komponenten an Beispielen . . . . . . 269 B. Ergänzungen zu den Experimenten zur Gesichtsdetektion . . . . . . . 273 B.1. Trainingsverlauf des Klassifikators TUC FD . . . . . . . . . . 273 B.2. Übersicht zu den Mindestdetektionsgrößen auf TS100 . . . . . 273 B.3. Visualisierung der Detektionen auf TS100 . . . . . . . . . . . 279 C. Systemkonfiguration . . . . . . . . . . . . . . . . . . . . . . . . . . . 281 Verzeichnis der Abkürzungen und Begriffe . . . v Literaturverzeichnis . . . vii, Videoanalyse, Objektdetektion, Schnitterkennung, Gesichtsdetektion, Fußgängererkennung, Holistische Softwarearchitektur, Video Analysis, Object Detection, Shot Detection, Face Detection, Pedestrian Detection, Holistic Software Architecture, Machine Learning, Boosting, Maschinelles Lernen, Hochschulschrift |
title |
Optimierung von Algorithmen zur Videoanalyse |
title_auth |
Optimierung von Algorithmen zur Videoanalyse |
title_full |
Optimierung von Algorithmen zur Videoanalyse |
title_fullStr |
Optimierung von Algorithmen zur Videoanalyse |
title_full_unstemmed |
Optimierung von Algorithmen zur Videoanalyse |
title_short |
Optimierung von Algorithmen zur Videoanalyse |
title_sort |
optimierung von algorithmen zur videoanalyse |
title_unstemmed |
Optimierung von Algorithmen zur Videoanalyse |
topic |
Videoanalyse, Objektdetektion, Schnitterkennung, Gesichtsdetektion, Fußgängererkennung, Holistische Softwarearchitektur, Video Analysis, Object Detection, Shot Detection, Face Detection, Pedestrian Detection, Holistic Software Architecture, Machine Learning, Boosting, Maschinelles Lernen, Hochschulschrift |
topic_facet |
Videoanalyse, Objektdetektion, Schnitterkennung, Gesichtsdetektion, Fußgängererkennung, Holistische Softwarearchitektur, Video Analysis, Object Detection, Shot Detection, Face Detection, Pedestrian Detection, Holistic Software Architecture, Machine Learning, Boosting, Maschinelles Lernen, Hochschulschrift |
url |
https://nbn-resolving.org/urn:nbn:de:bsz:ch1-qucosa-133517 |
urn |
urn:nbn:de:bsz:ch1-qucosa-133517 |
work_keys_str_mv |
AT rittermarc optimierungvonalgorithmenzurvideoanalyse, AT eiblmaximilian optimierungvonalgorithmenzurvideoanalyse, AT hamkerfred optimierungvonalgorithmenzurvideoanalyse |