Further processing options

Optimierung von Algorithmen zur Videoanalyse

Saved in:

Bibliographic Details
Authors and Corporations: Ritter, Marc, Eibl, Maximilian, Hamker, Fred
Title: Optimierung von Algorithmen zur Videoanalyse
Dissertation Note: Dissertation, 2013
Type of Resource: E-Book Thesis
Language: German
published:
Chemnitz Universitätsverlag Chemnitz
Online-Ausg.. 2015
Series: Wissenschaftliche Schriftenreihe Dissertationen der Medieninformatik
Subjects:
Source: Qucosa
LEADER 09893nam a2200481 c 4500
001 22-ch1-qucosa-133517
007 cr
008 2015 ger
037 |a urn:nbn:de:bsz:ch1-qucosa-133517 
041 |a ger 
082 |a 000 
100 |a Ritter, Marc 
245 |a Optimierung von Algorithmen zur Videoanalyse 
264 |a Chemnitz  |b Universitätsverlag Chemnitz 
336 |b txt 
338 |b nc 
490 |a Wissenschaftliche Schriftenreihe Dissertationen der Medieninformatik  |v Band 3 
533 |a Online-Ausg.  |d 2015  |e Online-Ressource (Text)  |f Universitätsbibliothek Chemnitz 
502 |b Dissertation  |d 2013 
505 |a 1. Motivation . . . 1 1.1. Einordnung in den Retrievalprozess . . . . . . . . . . . . . . . . . . . 2 1.2. Infrastruktur zur Optimierung von Verfahren zur Videoanalyse . . . . 4 1.3. Herausforderungen der Bilderkennung . . . . . . . . . . . . . . . . . . 6 1.4. Wissenschaftliche Ergebnisse dieser Arbeit . . . . . . . . . . . . . . . 9 1.5. Kapitelübersicht . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2. Methoden und Strategien der Videoanalyse . . . 15 2.1. Fachgebiete der Bilderkennung . . . . . . . . . . . . . . . . . . . . . . 16 2.1.1. Maschinelles Lernen . . . . . . . . . . . . . . . . . . . . . . . 17 2.1.2. Maschinelles Sehen . . . . . . . . . . . . . . . . . . . . . . . . 18 2.1.3. Computer Vision . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.1.4. Mustererkennung . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.2. Strukturelle Analyse von generischen Mustererkennungsystemen . . . 22 2.2.1. Datenakquisition . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.2.2. Musteranalyse . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.2.3. Musterklassifizierung . . . . . . . . . . . . . . . . . . . . . . . 26 2.2.4. Bilderkennungssysteme . . . . . . . . . . . . . . . . . . . . . . 28 2.2.5. Wissensentdeckung in Datenbanken . . . . . . . . . . . . . . . 28 2.3. Bilderkennung in der inhaltsbasierten Bildsuche . . . . . . . . . . . . 29 2.3.1. Paradigmen . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.3.2. Bildsignaturen . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.3.3. Signaturtypen . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.3.4. Lerntechniken . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 2.4. Holistische Bilderkennungssysteme im Überblick . . . . . . . . . . . . 44 2.4.1. Ein segment- und konturbasiertes CBIR-System . . . . . . . . 45 2.4.2. Biologisch inspirierte Systeme . . . . . . . . . . . . . . . . . . 48 2.4.3. Lernen aus wenigen Beispielen . . . . . . . . . . . . . . . . . . 51 2.5. Objekterkennung im Szenenkontext . . . . . . . . . . . . . . . . . . . 55 2.6. Aktuelle Grenzen der Muster- und Objekterkennung . . . . . . . . . . 60 2.7. Konzept eines generischen Workflows zur Objekterkennung in Videos . . . 64 2.7.1. Strukturelle Analyse . . . . . . . . . . . . . . . . . . . . . . . 64 2.7.2. Inhaltliche Analyse . . . . . . . . . . . . . . . . . . . . . . . . 66 2.7.3. Erweiterung des klassischen Paradigmas zur Objekterkennung . . . 67 2.7.4. Anwendungsdomänen . . . . . . . . . . . . . . . . . . . . . . . 68 2.8. Fazit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 3. Systemarchitektur zur Optimierung von Bilderkennungsverfahren . . . 71 3.1. Vorüberlegungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 3.1.1. Softwaretechnische Anforderungen . . . . . . . . . . . . . . . . 72 3.1.2. Bewertung der Systemleistung . . . . . . . . . . . . . . . . . . 75 3.1.3. Ein- und Ausgabe . . . . . . . . . . . . . . . . . . . . . . . . . 89 3.1.4. Modellierung von Domänenwissen . . . . . . . . . . . . . . . . 90 3.1.5. Diskriminierbarkeit von Merkmalen . . . . . . . . . . . . . . . 92 3.1.6. Zusammenfassende Darstellung . . . . . . . . . . . . . . . . . 95 3.2. Architektur des Gesamtsystems . . . . . . . . . . . . . . . . . . . . . 95 3.3. Struktureller Aufbau von AMOPA . . . . . . . . . . . . . . . . . . . 97 3.3.1. Verwendung von Prozessketten . . . . . . . . . . . . . . . . . 101 3.3.2. Bild- und Videoverarbeitung . . . . . . . . . . . . . . . . . . . 106 3.4. Annotation von Bildern und Videos . . . . . . . . . . . . . . . . . . . 107 3.4.1. Ein Annotationswerkzeug für Videos . . . . . . . . . . . . . . 108 3.4.2. Ein Ansatz zu Annotation, Klassifikation und Evaluation . . . 111 3.5. Fazit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 4. Videosegmentierung . . . 119 4.1. Schnitterkennung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 4.1.1. Struktureller Aufbau von Videos . . . . . . . . . . . . . . . . 121 4.1.2. Klassische Verfahren . . . . . . . . . . . . . . . . . . . . . . . 124 4.1.3. TRECVid: Evaluationskampagne und Datensätze . . . . . . . 125 4.1.4. Das Verfahren von AT&T . . . . . . . . . . . . . . . . . . . . 130 4.2. Schnittkomposition und Ähnlichkeit . . . . . . . . . . . . . . . . . . . 137 4.2.1. Dominant-Color-Deskriptor . . . . . . . . . . . . . . . . . . . 140 4.2.2. Color-Layout-Deskriptor . . . . . . . . . . . . . . . . . . . . . 140 4.2.3. Scalable-Color-Deskriptor . . . . . . . . . . . . . . . . . . . . 141 4.2.4. Edge-Histogram-Deskriptor . . . . . . . . . . . . . . . . . . . 142 4.3. Konzeption und Implementierung . . . . . . . . . . . . . . . . . . . . 143 4.3.1. Einbindung in das Prozesskonzept von AMOPA . . . . . . . . 144 4.3.2. Auswahl des Farbraums . . . . . . . . . . . . . . . . . . . . . 148 4.3.3. Bewegungsanalyse . . . . . . . . . . . . . . . . . . . . . . . . 151 4.3.4. Bestimmung und Verifikation von Schnittkandidaten . . . . . 159 4.3.5. Ergebnisdarstellung und -speicherung . . . . . . . . . . . . . . 171 4.4. Evaluation und Optimierung der harten Schnitterkennung . . . . . . 173 4.4.1. Die TRECVid Evaluationsmethodologie . . . . . . . . . . . . 174 4.4.2. Optimierung von Recall und Laufzeit . . . . . . . . . . . . . . 176 4.4.3. Optimierung der Precision . . . . . . . . . . . . . . . . . . . . 181 4.4.4. Validierung der Ergebnisse . . . . . . . . . . . . . . . . . . . . 183 4.5. Fazit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 5. Gesichtsdetektion . . . 187 5.1. Stand der Technik . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 5.1.1. Verfahrensklassen und Datensätze . . . . . . . . . . . . . . . . 189 5.1.2. Boosting-Verfahren . . . . . . . . . . . . . . . . . . . . . . . . 192 5.2. Realisierung eines Systems zur Musterklassifizierung . . . . . . . . . . 200 5.2.1. Trainingsphase . . . . . . . . . . . . . . . . . . . . . . . . . . 201 5.2.2. Klassifikation mit Hilfe von Detektorketten . . . . . . . . . . . 203 5.2.3. Erlernen eines geboosteten Gesichtsklassifikators . . . . . . . . 206 5.2.4. Exkurs: Gesichtslokalisation mittels Schwarmintelligenz . . . . 210 5.3. Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214 5.3.1. Datensatz TS100 . . . . . . . . . . . . . . . . . . . . . . . . . 214 5.3.2. Annotation von Gesichtern in unbeschränkten Domänen . . . 217 5.3.3. Evaluationsmethodik und Ergebnisdiskussion . . . . . . . . . . 218 5.4. Fazit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 6. Erkennung weiterer Objektklassen am Beispiel von Personen . . . 229 6.1. Merkmale für die Personenerkennung . . . . . . . . . . . . . . . . . . 230 6.2. Datensätze . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 6.3. Evaluation von Merkmalen auf verschiedenen Datensätzen . . . . . . 234 6.3.1. Evaluationsmethodik . . . . . . . . . . . . . . . . . . . . . . . 235 6.3.2. Auswertung und Ergebnisdiskussion . . . . . . . . . . . . . . . 238 6.4. Evaluation eines kaskadierten Klassifikationssystems . . . . . . . . . . 242 6.4.1. Systemarchitektur und Training . . . . . . . . . . . . . . . . . 242 6.4.2. Klassifikation und Evaluation . . . . . . . . . . . . . . . . . . 244 6.5. Fazit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248 7. Zusammenfassung und Ausblick . . . 251 Anhang . . . 257 A. Übersicht zu den Experimenten zur Schnitterkennung . . . . . . . . . 259 A.1. Konfiguration und Laufzeiten der Experimente . . . . . . . . . 259 A.2. Stufe I: Farbraum und Bewegungsschätzung . . . . . . . . . . 261 A.3. Stufe II: Optimierung der Precision . . . . . . . . . . . . . . . 261 A.4. Echtzeitfähige Datenvisualisierung . . . . . . . . . . . . . . . . 267 A.5. Visualisierung einzelner Komponenten an Beispielen . . . . . . 269 B. Ergänzungen zu den Experimenten zur Gesichtsdetektion . . . . . . . 273 B.1. Trainingsverlauf des Klassifikators TUC FD . . . . . . . . . . 273 B.2. Übersicht zu den Mindestdetektionsgrößen auf TS100 . . . . . 273 B.3. Visualisierung der Detektionen auf TS100 . . . . . . . . . . . 279 C. Systemkonfiguration . . . . . . . . . . . . . . . . . . . . . . . . . . . 281 Verzeichnis der Abkürzungen und Begriffe . . . v Literaturverzeichnis . . . vii 
650 |a Videoanalyse 
650 |a Objektdetektion 
650 |a Schnitterkennung 
650 |a Gesichtsdetektion 
650 |a Fußgängererkennung 
650 |a Holistische Softwarearchitektur 
650 |a Video Analysis 
650 |a Object Detection 
650 |a Shot Detection 
650 |a Face Detection 
650 |a Pedestrian Detection 
650 |a Holistic Software Architecture 
650 |a Machine Learning 
650 |a Boosting 
650 |a Maschinelles Lernen 
650 |a Boosting 
655 |a Hochschulschrift  |2 gnd-content 
700 |a Eibl, Maximilian 
700 |a Hamker, Fred 
700 |a Eibl, Maximilian 
856 4 0 |q text/html  |u https://nbn-resolving.org/urn:nbn:de:bsz:ch1-qucosa-133517  |z Online-Zugriff 
935 |c hs 
980 |a ch1-qucosa-133517  |b 22  |c sid-22-col-qucosa 
openURL url_ver=Z39.88-2004&ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fvufind.svn.sourceforge.net%3Agenerator&rft.title=Optimierung+von+Algorithmen+zur+Videoanalyse&rft.date=&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Adc&rft.creator=Ritter%2C+Marc&rft.pub=Universit%C3%A4tsverlag+Chemnitz&rft.format=eBook&rft.language=German
SOLR
_version_ 1796096771986817024
author Ritter, Marc
author2 Eibl, Maximilian, Hamker, Fred, Eibl, Maximilian
author2_role , ,
author2_variant m e me, f h fh, m e me
author_facet Ritter, Marc, Eibl, Maximilian, Hamker, Fred, Eibl, Maximilian
author_role
author_sort Ritter, Marc
author_variant m r mr
building Library A
collection sid-22-col-qucosa
contents 1. Motivation . . . 1 1.1. Einordnung in den Retrievalprozess . . . . . . . . . . . . . . . . . . . 2 1.2. Infrastruktur zur Optimierung von Verfahren zur Videoanalyse . . . . 4 1.3. Herausforderungen der Bilderkennung . . . . . . . . . . . . . . . . . . 6 1.4. Wissenschaftliche Ergebnisse dieser Arbeit . . . . . . . . . . . . . . . 9 1.5. Kapitelübersicht . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2. Methoden und Strategien der Videoanalyse . . . 15 2.1. Fachgebiete der Bilderkennung . . . . . . . . . . . . . . . . . . . . . . 16 2.1.1. Maschinelles Lernen . . . . . . . . . . . . . . . . . . . . . . . 17 2.1.2. Maschinelles Sehen . . . . . . . . . . . . . . . . . . . . . . . . 18 2.1.3. Computer Vision . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.1.4. Mustererkennung . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.2. Strukturelle Analyse von generischen Mustererkennungsystemen . . . 22 2.2.1. Datenakquisition . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.2.2. Musteranalyse . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.2.3. Musterklassifizierung . . . . . . . . . . . . . . . . . . . . . . . 26 2.2.4. Bilderkennungssysteme . . . . . . . . . . . . . . . . . . . . . . 28 2.2.5. Wissensentdeckung in Datenbanken . . . . . . . . . . . . . . . 28 2.3. Bilderkennung in der inhaltsbasierten Bildsuche . . . . . . . . . . . . 29 2.3.1. Paradigmen . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.3.2. Bildsignaturen . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.3.3. Signaturtypen . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.3.4. Lerntechniken . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 2.4. Holistische Bilderkennungssysteme im Überblick . . . . . . . . . . . . 44 2.4.1. Ein segment- und konturbasiertes CBIR-System . . . . . . . . 45 2.4.2. Biologisch inspirierte Systeme . . . . . . . . . . . . . . . . . . 48 2.4.3. Lernen aus wenigen Beispielen . . . . . . . . . . . . . . . . . . 51 2.5. Objekterkennung im Szenenkontext . . . . . . . . . . . . . . . . . . . 55 2.6. Aktuelle Grenzen der Muster- und Objekterkennung . . . . . . . . . . 60 2.7. Konzept eines generischen Workflows zur Objekterkennung in Videos . . . 64 2.7.1. Strukturelle Analyse . . . . . . . . . . . . . . . . . . . . . . . 64 2.7.2. Inhaltliche Analyse . . . . . . . . . . . . . . . . . . . . . . . . 66 2.7.3. Erweiterung des klassischen Paradigmas zur Objekterkennung . . . 67 2.7.4. Anwendungsdomänen . . . . . . . . . . . . . . . . . . . . . . . 68 2.8. Fazit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 3. Systemarchitektur zur Optimierung von Bilderkennungsverfahren . . . 71 3.1. Vorüberlegungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 3.1.1. Softwaretechnische Anforderungen . . . . . . . . . . . . . . . . 72 3.1.2. Bewertung der Systemleistung . . . . . . . . . . . . . . . . . . 75 3.1.3. Ein- und Ausgabe . . . . . . . . . . . . . . . . . . . . . . . . . 89 3.1.4. Modellierung von Domänenwissen . . . . . . . . . . . . . . . . 90 3.1.5. Diskriminierbarkeit von Merkmalen . . . . . . . . . . . . . . . 92 3.1.6. Zusammenfassende Darstellung . . . . . . . . . . . . . . . . . 95 3.2. Architektur des Gesamtsystems . . . . . . . . . . . . . . . . . . . . . 95 3.3. Struktureller Aufbau von AMOPA . . . . . . . . . . . . . . . . . . . 97 3.3.1. Verwendung von Prozessketten . . . . . . . . . . . . . . . . . 101 3.3.2. Bild- und Videoverarbeitung . . . . . . . . . . . . . . . . . . . 106 3.4. Annotation von Bildern und Videos . . . . . . . . . . . . . . . . . . . 107 3.4.1. Ein Annotationswerkzeug für Videos . . . . . . . . . . . . . . 108 3.4.2. Ein Ansatz zu Annotation, Klassifikation und Evaluation . . . 111 3.5. Fazit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 4. Videosegmentierung . . . 119 4.1. Schnitterkennung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 4.1.1. Struktureller Aufbau von Videos . . . . . . . . . . . . . . . . 121 4.1.2. Klassische Verfahren . . . . . . . . . . . . . . . . . . . . . . . 124 4.1.3. TRECVid: Evaluationskampagne und Datensätze . . . . . . . 125 4.1.4. Das Verfahren von AT&T . . . . . . . . . . . . . . . . . . . . 130 4.2. Schnittkomposition und Ähnlichkeit . . . . . . . . . . . . . . . . . . . 137 4.2.1. Dominant-Color-Deskriptor . . . . . . . . . . . . . . . . . . . 140 4.2.2. Color-Layout-Deskriptor . . . . . . . . . . . . . . . . . . . . . 140 4.2.3. Scalable-Color-Deskriptor . . . . . . . . . . . . . . . . . . . . 141 4.2.4. Edge-Histogram-Deskriptor . . . . . . . . . . . . . . . . . . . 142 4.3. Konzeption und Implementierung . . . . . . . . . . . . . . . . . . . . 143 4.3.1. Einbindung in das Prozesskonzept von AMOPA . . . . . . . . 144 4.3.2. Auswahl des Farbraums . . . . . . . . . . . . . . . . . . . . . 148 4.3.3. Bewegungsanalyse . . . . . . . . . . . . . . . . . . . . . . . . 151 4.3.4. Bestimmung und Verifikation von Schnittkandidaten . . . . . 159 4.3.5. Ergebnisdarstellung und -speicherung . . . . . . . . . . . . . . 171 4.4. Evaluation und Optimierung der harten Schnitterkennung . . . . . . 173 4.4.1. Die TRECVid Evaluationsmethodologie . . . . . . . . . . . . 174 4.4.2. Optimierung von Recall und Laufzeit . . . . . . . . . . . . . . 176 4.4.3. Optimierung der Precision . . . . . . . . . . . . . . . . . . . . 181 4.4.4. Validierung der Ergebnisse . . . . . . . . . . . . . . . . . . . . 183 4.5. Fazit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 5. Gesichtsdetektion . . . 187 5.1. Stand der Technik . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 5.1.1. Verfahrensklassen und Datensätze . . . . . . . . . . . . . . . . 189 5.1.2. Boosting-Verfahren . . . . . . . . . . . . . . . . . . . . . . . . 192 5.2. Realisierung eines Systems zur Musterklassifizierung . . . . . . . . . . 200 5.2.1. Trainingsphase . . . . . . . . . . . . . . . . . . . . . . . . . . 201 5.2.2. Klassifikation mit Hilfe von Detektorketten . . . . . . . . . . . 203 5.2.3. Erlernen eines geboosteten Gesichtsklassifikators . . . . . . . . 206 5.2.4. Exkurs: Gesichtslokalisation mittels Schwarmintelligenz . . . . 210 5.3. Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214 5.3.1. Datensatz TS100 . . . . . . . . . . . . . . . . . . . . . . . . . 214 5.3.2. Annotation von Gesichtern in unbeschränkten Domänen . . . 217 5.3.3. Evaluationsmethodik und Ergebnisdiskussion . . . . . . . . . . 218 5.4. Fazit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 6. Erkennung weiterer Objektklassen am Beispiel von Personen . . . 229 6.1. Merkmale für die Personenerkennung . . . . . . . . . . . . . . . . . . 230 6.2. Datensätze . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 6.3. Evaluation von Merkmalen auf verschiedenen Datensätzen . . . . . . 234 6.3.1. Evaluationsmethodik . . . . . . . . . . . . . . . . . . . . . . . 235 6.3.2. Auswertung und Ergebnisdiskussion . . . . . . . . . . . . . . . 238 6.4. Evaluation eines kaskadierten Klassifikationssystems . . . . . . . . . . 242 6.4.1. Systemarchitektur und Training . . . . . . . . . . . . . . . . . 242 6.4.2. Klassifikation und Evaluation . . . . . . . . . . . . . . . . . . 244 6.5. Fazit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248 7. Zusammenfassung und Ausblick . . . 251 Anhang . . . 257 A. Übersicht zu den Experimenten zur Schnitterkennung . . . . . . . . . 259 A.1. Konfiguration und Laufzeiten der Experimente . . . . . . . . . 259 A.2. Stufe I: Farbraum und Bewegungsschätzung . . . . . . . . . . 261 A.3. Stufe II: Optimierung der Precision . . . . . . . . . . . . . . . 261 A.4. Echtzeitfähige Datenvisualisierung . . . . . . . . . . . . . . . . 267 A.5. Visualisierung einzelner Komponenten an Beispielen . . . . . . 269 B. Ergänzungen zu den Experimenten zur Gesichtsdetektion . . . . . . . 273 B.1. Trainingsverlauf des Klassifikators TUC FD . . . . . . . . . . 273 B.2. Übersicht zu den Mindestdetektionsgrößen auf TS100 . . . . . 273 B.3. Visualisierung der Detektionen auf TS100 . . . . . . . . . . . 279 C. Systemkonfiguration . . . . . . . . . . . . . . . . . . . . . . . . . . . 281 Verzeichnis der Abkürzungen und Begriffe . . . v Literaturverzeichnis . . . vii
dewey-full 000
dewey-hundreds 000 - Computer science, information, general works
dewey-ones 000 - Computer science, information, general works
dewey-raw 000
dewey-search 000
dewey-sort 0
dewey-tens 000 - Computer science, information, general works
facet_avail Online, Free
finc_class_facet Informatik
fincclass_txtF_mv information-knowledge
format eBook, Thesis
format_access_txtF_mv Thesis
format_de14 Thesis, Book, E-Book
format_de15 Thesis, Book, E-Book
format_del152 Buch, Buch
format_detail_txtF_mv text-online-monograph-independent-thesis
format_dezi4 e-Book
format_finc Book, E-Book, Thesis
format_legacy Thesis, Book
format_legacy_nrw Thesis, Book, E-Book
format_nrw Thesis, Book, E-Book
format_strict_txtF_mv E-Thesis
genre Hochschulschrift gnd-content
genre_facet Hochschulschrift
geogr_code not assigned
geogr_code_person not assigned
id 22-ch1-qucosa-133517
illustrated Not Illustrated
imprint Chemnitz, Universitätsverlag Chemnitz
imprint_str_mv Online-Ausg.: 2015
institution DE-105, DE-Gla1, DE-Brt1, DE-D161, DE-540, DE-Pl11, DE-Rs1, DE-Bn3, DE-Zi4, DE-Zwi2, DE-D117, DE-Mh31, DE-D275, DE-Ch1, DE-15, DE-D13, DE-L242, DE-L229, DE-L328
is_hierarchy_id
is_hierarchy_title
language German
last_indexed 2024-04-12T03:09:19.153Z
match_str ritter2015optimierungvonalgorithmenzurvideoanalyse
mega_collection Qucosa
publishDate
publishDateSort 2015
publishPlace Chemnitz
publisher Universitätsverlag Chemnitz
record_format marcfinc
record_id ch1-qucosa-133517
recordtype marcfinc
rvk_facet No subject assigned
score 16,954676
series2 Wissenschaftliche Schriftenreihe Dissertationen der Medieninformatik ; Band 3
source_id 22
spelling Ritter, Marc, Optimierung von Algorithmen zur Videoanalyse, Chemnitz Universitätsverlag Chemnitz, txt, nc, Wissenschaftliche Schriftenreihe Dissertationen der Medieninformatik Band 3, Online-Ausg. 2015 Online-Ressource (Text) Universitätsbibliothek Chemnitz, Dissertation 2013, 1. Motivation . . . 1 1.1. Einordnung in den Retrievalprozess . . . . . . . . . . . . . . . . . . . 2 1.2. Infrastruktur zur Optimierung von Verfahren zur Videoanalyse . . . . 4 1.3. Herausforderungen der Bilderkennung . . . . . . . . . . . . . . . . . . 6 1.4. Wissenschaftliche Ergebnisse dieser Arbeit . . . . . . . . . . . . . . . 9 1.5. Kapitelübersicht . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2. Methoden und Strategien der Videoanalyse . . . 15 2.1. Fachgebiete der Bilderkennung . . . . . . . . . . . . . . . . . . . . . . 16 2.1.1. Maschinelles Lernen . . . . . . . . . . . . . . . . . . . . . . . 17 2.1.2. Maschinelles Sehen . . . . . . . . . . . . . . . . . . . . . . . . 18 2.1.3. Computer Vision . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.1.4. Mustererkennung . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.2. Strukturelle Analyse von generischen Mustererkennungsystemen . . . 22 2.2.1. Datenakquisition . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.2.2. Musteranalyse . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.2.3. Musterklassifizierung . . . . . . . . . . . . . . . . . . . . . . . 26 2.2.4. Bilderkennungssysteme . . . . . . . . . . . . . . . . . . . . . . 28 2.2.5. Wissensentdeckung in Datenbanken . . . . . . . . . . . . . . . 28 2.3. Bilderkennung in der inhaltsbasierten Bildsuche . . . . . . . . . . . . 29 2.3.1. Paradigmen . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.3.2. Bildsignaturen . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.3.3. Signaturtypen . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.3.4. Lerntechniken . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 2.4. Holistische Bilderkennungssysteme im Überblick . . . . . . . . . . . . 44 2.4.1. Ein segment- und konturbasiertes CBIR-System . . . . . . . . 45 2.4.2. Biologisch inspirierte Systeme . . . . . . . . . . . . . . . . . . 48 2.4.3. Lernen aus wenigen Beispielen . . . . . . . . . . . . . . . . . . 51 2.5. Objekterkennung im Szenenkontext . . . . . . . . . . . . . . . . . . . 55 2.6. Aktuelle Grenzen der Muster- und Objekterkennung . . . . . . . . . . 60 2.7. Konzept eines generischen Workflows zur Objekterkennung in Videos . . . 64 2.7.1. Strukturelle Analyse . . . . . . . . . . . . . . . . . . . . . . . 64 2.7.2. Inhaltliche Analyse . . . . . . . . . . . . . . . . . . . . . . . . 66 2.7.3. Erweiterung des klassischen Paradigmas zur Objekterkennung . . . 67 2.7.4. Anwendungsdomänen . . . . . . . . . . . . . . . . . . . . . . . 68 2.8. Fazit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 3. Systemarchitektur zur Optimierung von Bilderkennungsverfahren . . . 71 3.1. Vorüberlegungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 3.1.1. Softwaretechnische Anforderungen . . . . . . . . . . . . . . . . 72 3.1.2. Bewertung der Systemleistung . . . . . . . . . . . . . . . . . . 75 3.1.3. Ein- und Ausgabe . . . . . . . . . . . . . . . . . . . . . . . . . 89 3.1.4. Modellierung von Domänenwissen . . . . . . . . . . . . . . . . 90 3.1.5. Diskriminierbarkeit von Merkmalen . . . . . . . . . . . . . . . 92 3.1.6. Zusammenfassende Darstellung . . . . . . . . . . . . . . . . . 95 3.2. Architektur des Gesamtsystems . . . . . . . . . . . . . . . . . . . . . 95 3.3. Struktureller Aufbau von AMOPA . . . . . . . . . . . . . . . . . . . 97 3.3.1. Verwendung von Prozessketten . . . . . . . . . . . . . . . . . 101 3.3.2. Bild- und Videoverarbeitung . . . . . . . . . . . . . . . . . . . 106 3.4. Annotation von Bildern und Videos . . . . . . . . . . . . . . . . . . . 107 3.4.1. Ein Annotationswerkzeug für Videos . . . . . . . . . . . . . . 108 3.4.2. Ein Ansatz zu Annotation, Klassifikation und Evaluation . . . 111 3.5. Fazit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 4. Videosegmentierung . . . 119 4.1. Schnitterkennung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 4.1.1. Struktureller Aufbau von Videos . . . . . . . . . . . . . . . . 121 4.1.2. Klassische Verfahren . . . . . . . . . . . . . . . . . . . . . . . 124 4.1.3. TRECVid: Evaluationskampagne und Datensätze . . . . . . . 125 4.1.4. Das Verfahren von AT&T . . . . . . . . . . . . . . . . . . . . 130 4.2. Schnittkomposition und Ähnlichkeit . . . . . . . . . . . . . . . . . . . 137 4.2.1. Dominant-Color-Deskriptor . . . . . . . . . . . . . . . . . . . 140 4.2.2. Color-Layout-Deskriptor . . . . . . . . . . . . . . . . . . . . . 140 4.2.3. Scalable-Color-Deskriptor . . . . . . . . . . . . . . . . . . . . 141 4.2.4. Edge-Histogram-Deskriptor . . . . . . . . . . . . . . . . . . . 142 4.3. Konzeption und Implementierung . . . . . . . . . . . . . . . . . . . . 143 4.3.1. Einbindung in das Prozesskonzept von AMOPA . . . . . . . . 144 4.3.2. Auswahl des Farbraums . . . . . . . . . . . . . . . . . . . . . 148 4.3.3. Bewegungsanalyse . . . . . . . . . . . . . . . . . . . . . . . . 151 4.3.4. Bestimmung und Verifikation von Schnittkandidaten . . . . . 159 4.3.5. Ergebnisdarstellung und -speicherung . . . . . . . . . . . . . . 171 4.4. Evaluation und Optimierung der harten Schnitterkennung . . . . . . 173 4.4.1. Die TRECVid Evaluationsmethodologie . . . . . . . . . . . . 174 4.4.2. Optimierung von Recall und Laufzeit . . . . . . . . . . . . . . 176 4.4.3. Optimierung der Precision . . . . . . . . . . . . . . . . . . . . 181 4.4.4. Validierung der Ergebnisse . . . . . . . . . . . . . . . . . . . . 183 4.5. Fazit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 5. Gesichtsdetektion . . . 187 5.1. Stand der Technik . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 5.1.1. Verfahrensklassen und Datensätze . . . . . . . . . . . . . . . . 189 5.1.2. Boosting-Verfahren . . . . . . . . . . . . . . . . . . . . . . . . 192 5.2. Realisierung eines Systems zur Musterklassifizierung . . . . . . . . . . 200 5.2.1. Trainingsphase . . . . . . . . . . . . . . . . . . . . . . . . . . 201 5.2.2. Klassifikation mit Hilfe von Detektorketten . . . . . . . . . . . 203 5.2.3. Erlernen eines geboosteten Gesichtsklassifikators . . . . . . . . 206 5.2.4. Exkurs: Gesichtslokalisation mittels Schwarmintelligenz . . . . 210 5.3. Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214 5.3.1. Datensatz TS100 . . . . . . . . . . . . . . . . . . . . . . . . . 214 5.3.2. Annotation von Gesichtern in unbeschränkten Domänen . . . 217 5.3.3. Evaluationsmethodik und Ergebnisdiskussion . . . . . . . . . . 218 5.4. Fazit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 6. Erkennung weiterer Objektklassen am Beispiel von Personen . . . 229 6.1. Merkmale für die Personenerkennung . . . . . . . . . . . . . . . . . . 230 6.2. Datensätze . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 6.3. Evaluation von Merkmalen auf verschiedenen Datensätzen . . . . . . 234 6.3.1. Evaluationsmethodik . . . . . . . . . . . . . . . . . . . . . . . 235 6.3.2. Auswertung und Ergebnisdiskussion . . . . . . . . . . . . . . . 238 6.4. Evaluation eines kaskadierten Klassifikationssystems . . . . . . . . . . 242 6.4.1. Systemarchitektur und Training . . . . . . . . . . . . . . . . . 242 6.4.2. Klassifikation und Evaluation . . . . . . . . . . . . . . . . . . 244 6.5. Fazit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248 7. Zusammenfassung und Ausblick . . . 251 Anhang . . . 257 A. Übersicht zu den Experimenten zur Schnitterkennung . . . . . . . . . 259 A.1. Konfiguration und Laufzeiten der Experimente . . . . . . . . . 259 A.2. Stufe I: Farbraum und Bewegungsschätzung . . . . . . . . . . 261 A.3. Stufe II: Optimierung der Precision . . . . . . . . . . . . . . . 261 A.4. Echtzeitfähige Datenvisualisierung . . . . . . . . . . . . . . . . 267 A.5. Visualisierung einzelner Komponenten an Beispielen . . . . . . 269 B. Ergänzungen zu den Experimenten zur Gesichtsdetektion . . . . . . . 273 B.1. Trainingsverlauf des Klassifikators TUC FD . . . . . . . . . . 273 B.2. Übersicht zu den Mindestdetektionsgrößen auf TS100 . . . . . 273 B.3. Visualisierung der Detektionen auf TS100 . . . . . . . . . . . 279 C. Systemkonfiguration . . . . . . . . . . . . . . . . . . . . . . . . . . . 281 Verzeichnis der Abkürzungen und Begriffe . . . v Literaturverzeichnis . . . vii, Videoanalyse, Objektdetektion, Schnitterkennung, Gesichtsdetektion, Fußgängererkennung, Holistische Softwarearchitektur, Video Analysis, Object Detection, Shot Detection, Face Detection, Pedestrian Detection, Holistic Software Architecture, Machine Learning, Boosting, Maschinelles Lernen, Hochschulschrift gnd-content, Eibl, Maximilian, Hamker, Fred, text/html https://nbn-resolving.org/urn:nbn:de:bsz:ch1-qucosa-133517 Online-Zugriff
spellingShingle Ritter, Marc, Optimierung von Algorithmen zur Videoanalyse, 1. Motivation . . . 1 1.1. Einordnung in den Retrievalprozess . . . . . . . . . . . . . . . . . . . 2 1.2. Infrastruktur zur Optimierung von Verfahren zur Videoanalyse . . . . 4 1.3. Herausforderungen der Bilderkennung . . . . . . . . . . . . . . . . . . 6 1.4. Wissenschaftliche Ergebnisse dieser Arbeit . . . . . . . . . . . . . . . 9 1.5. Kapitelübersicht . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2. Methoden und Strategien der Videoanalyse . . . 15 2.1. Fachgebiete der Bilderkennung . . . . . . . . . . . . . . . . . . . . . . 16 2.1.1. Maschinelles Lernen . . . . . . . . . . . . . . . . . . . . . . . 17 2.1.2. Maschinelles Sehen . . . . . . . . . . . . . . . . . . . . . . . . 18 2.1.3. Computer Vision . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.1.4. Mustererkennung . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.2. Strukturelle Analyse von generischen Mustererkennungsystemen . . . 22 2.2.1. Datenakquisition . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.2.2. Musteranalyse . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.2.3. Musterklassifizierung . . . . . . . . . . . . . . . . . . . . . . . 26 2.2.4. Bilderkennungssysteme . . . . . . . . . . . . . . . . . . . . . . 28 2.2.5. Wissensentdeckung in Datenbanken . . . . . . . . . . . . . . . 28 2.3. Bilderkennung in der inhaltsbasierten Bildsuche . . . . . . . . . . . . 29 2.3.1. Paradigmen . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.3.2. Bildsignaturen . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.3.3. Signaturtypen . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.3.4. Lerntechniken . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 2.4. Holistische Bilderkennungssysteme im Überblick . . . . . . . . . . . . 44 2.4.1. Ein segment- und konturbasiertes CBIR-System . . . . . . . . 45 2.4.2. Biologisch inspirierte Systeme . . . . . . . . . . . . . . . . . . 48 2.4.3. Lernen aus wenigen Beispielen . . . . . . . . . . . . . . . . . . 51 2.5. Objekterkennung im Szenenkontext . . . . . . . . . . . . . . . . . . . 55 2.6. Aktuelle Grenzen der Muster- und Objekterkennung . . . . . . . . . . 60 2.7. Konzept eines generischen Workflows zur Objekterkennung in Videos . . . 64 2.7.1. Strukturelle Analyse . . . . . . . . . . . . . . . . . . . . . . . 64 2.7.2. Inhaltliche Analyse . . . . . . . . . . . . . . . . . . . . . . . . 66 2.7.3. Erweiterung des klassischen Paradigmas zur Objekterkennung . . . 67 2.7.4. Anwendungsdomänen . . . . . . . . . . . . . . . . . . . . . . . 68 2.8. Fazit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 3. Systemarchitektur zur Optimierung von Bilderkennungsverfahren . . . 71 3.1. Vorüberlegungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 3.1.1. Softwaretechnische Anforderungen . . . . . . . . . . . . . . . . 72 3.1.2. Bewertung der Systemleistung . . . . . . . . . . . . . . . . . . 75 3.1.3. Ein- und Ausgabe . . . . . . . . . . . . . . . . . . . . . . . . . 89 3.1.4. Modellierung von Domänenwissen . . . . . . . . . . . . . . . . 90 3.1.5. Diskriminierbarkeit von Merkmalen . . . . . . . . . . . . . . . 92 3.1.6. Zusammenfassende Darstellung . . . . . . . . . . . . . . . . . 95 3.2. Architektur des Gesamtsystems . . . . . . . . . . . . . . . . . . . . . 95 3.3. Struktureller Aufbau von AMOPA . . . . . . . . . . . . . . . . . . . 97 3.3.1. Verwendung von Prozessketten . . . . . . . . . . . . . . . . . 101 3.3.2. Bild- und Videoverarbeitung . . . . . . . . . . . . . . . . . . . 106 3.4. Annotation von Bildern und Videos . . . . . . . . . . . . . . . . . . . 107 3.4.1. Ein Annotationswerkzeug für Videos . . . . . . . . . . . . . . 108 3.4.2. Ein Ansatz zu Annotation, Klassifikation und Evaluation . . . 111 3.5. Fazit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 4. Videosegmentierung . . . 119 4.1. Schnitterkennung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 4.1.1. Struktureller Aufbau von Videos . . . . . . . . . . . . . . . . 121 4.1.2. Klassische Verfahren . . . . . . . . . . . . . . . . . . . . . . . 124 4.1.3. TRECVid: Evaluationskampagne und Datensätze . . . . . . . 125 4.1.4. Das Verfahren von AT&T . . . . . . . . . . . . . . . . . . . . 130 4.2. Schnittkomposition und Ähnlichkeit . . . . . . . . . . . . . . . . . . . 137 4.2.1. Dominant-Color-Deskriptor . . . . . . . . . . . . . . . . . . . 140 4.2.2. Color-Layout-Deskriptor . . . . . . . . . . . . . . . . . . . . . 140 4.2.3. Scalable-Color-Deskriptor . . . . . . . . . . . . . . . . . . . . 141 4.2.4. Edge-Histogram-Deskriptor . . . . . . . . . . . . . . . . . . . 142 4.3. Konzeption und Implementierung . . . . . . . . . . . . . . . . . . . . 143 4.3.1. Einbindung in das Prozesskonzept von AMOPA . . . . . . . . 144 4.3.2. Auswahl des Farbraums . . . . . . . . . . . . . . . . . . . . . 148 4.3.3. Bewegungsanalyse . . . . . . . . . . . . . . . . . . . . . . . . 151 4.3.4. Bestimmung und Verifikation von Schnittkandidaten . . . . . 159 4.3.5. Ergebnisdarstellung und -speicherung . . . . . . . . . . . . . . 171 4.4. Evaluation und Optimierung der harten Schnitterkennung . . . . . . 173 4.4.1. Die TRECVid Evaluationsmethodologie . . . . . . . . . . . . 174 4.4.2. Optimierung von Recall und Laufzeit . . . . . . . . . . . . . . 176 4.4.3. Optimierung der Precision . . . . . . . . . . . . . . . . . . . . 181 4.4.4. Validierung der Ergebnisse . . . . . . . . . . . . . . . . . . . . 183 4.5. Fazit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 5. Gesichtsdetektion . . . 187 5.1. Stand der Technik . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 5.1.1. Verfahrensklassen und Datensätze . . . . . . . . . . . . . . . . 189 5.1.2. Boosting-Verfahren . . . . . . . . . . . . . . . . . . . . . . . . 192 5.2. Realisierung eines Systems zur Musterklassifizierung . . . . . . . . . . 200 5.2.1. Trainingsphase . . . . . . . . . . . . . . . . . . . . . . . . . . 201 5.2.2. Klassifikation mit Hilfe von Detektorketten . . . . . . . . . . . 203 5.2.3. Erlernen eines geboosteten Gesichtsklassifikators . . . . . . . . 206 5.2.4. Exkurs: Gesichtslokalisation mittels Schwarmintelligenz . . . . 210 5.3. Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214 5.3.1. Datensatz TS100 . . . . . . . . . . . . . . . . . . . . . . . . . 214 5.3.2. Annotation von Gesichtern in unbeschränkten Domänen . . . 217 5.3.3. Evaluationsmethodik und Ergebnisdiskussion . . . . . . . . . . 218 5.4. Fazit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 6. Erkennung weiterer Objektklassen am Beispiel von Personen . . . 229 6.1. Merkmale für die Personenerkennung . . . . . . . . . . . . . . . . . . 230 6.2. Datensätze . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 6.3. Evaluation von Merkmalen auf verschiedenen Datensätzen . . . . . . 234 6.3.1. Evaluationsmethodik . . . . . . . . . . . . . . . . . . . . . . . 235 6.3.2. Auswertung und Ergebnisdiskussion . . . . . . . . . . . . . . . 238 6.4. Evaluation eines kaskadierten Klassifikationssystems . . . . . . . . . . 242 6.4.1. Systemarchitektur und Training . . . . . . . . . . . . . . . . . 242 6.4.2. Klassifikation und Evaluation . . . . . . . . . . . . . . . . . . 244 6.5. Fazit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248 7. Zusammenfassung und Ausblick . . . 251 Anhang . . . 257 A. Übersicht zu den Experimenten zur Schnitterkennung . . . . . . . . . 259 A.1. Konfiguration und Laufzeiten der Experimente . . . . . . . . . 259 A.2. Stufe I: Farbraum und Bewegungsschätzung . . . . . . . . . . 261 A.3. Stufe II: Optimierung der Precision . . . . . . . . . . . . . . . 261 A.4. Echtzeitfähige Datenvisualisierung . . . . . . . . . . . . . . . . 267 A.5. Visualisierung einzelner Komponenten an Beispielen . . . . . . 269 B. Ergänzungen zu den Experimenten zur Gesichtsdetektion . . . . . . . 273 B.1. Trainingsverlauf des Klassifikators TUC FD . . . . . . . . . . 273 B.2. Übersicht zu den Mindestdetektionsgrößen auf TS100 . . . . . 273 B.3. Visualisierung der Detektionen auf TS100 . . . . . . . . . . . 279 C. Systemkonfiguration . . . . . . . . . . . . . . . . . . . . . . . . . . . 281 Verzeichnis der Abkürzungen und Begriffe . . . v Literaturverzeichnis . . . vii, Videoanalyse, Objektdetektion, Schnitterkennung, Gesichtsdetektion, Fußgängererkennung, Holistische Softwarearchitektur, Video Analysis, Object Detection, Shot Detection, Face Detection, Pedestrian Detection, Holistic Software Architecture, Machine Learning, Boosting, Maschinelles Lernen, Hochschulschrift
title Optimierung von Algorithmen zur Videoanalyse
title_auth Optimierung von Algorithmen zur Videoanalyse
title_full Optimierung von Algorithmen zur Videoanalyse
title_fullStr Optimierung von Algorithmen zur Videoanalyse
title_full_unstemmed Optimierung von Algorithmen zur Videoanalyse
title_short Optimierung von Algorithmen zur Videoanalyse
title_sort optimierung von algorithmen zur videoanalyse
title_unstemmed Optimierung von Algorithmen zur Videoanalyse
topic Videoanalyse, Objektdetektion, Schnitterkennung, Gesichtsdetektion, Fußgängererkennung, Holistische Softwarearchitektur, Video Analysis, Object Detection, Shot Detection, Face Detection, Pedestrian Detection, Holistic Software Architecture, Machine Learning, Boosting, Maschinelles Lernen, Hochschulschrift
topic_facet Videoanalyse, Objektdetektion, Schnitterkennung, Gesichtsdetektion, Fußgängererkennung, Holistische Softwarearchitektur, Video Analysis, Object Detection, Shot Detection, Face Detection, Pedestrian Detection, Holistic Software Architecture, Machine Learning, Boosting, Maschinelles Lernen, Hochschulschrift
url https://nbn-resolving.org/urn:nbn:de:bsz:ch1-qucosa-133517
urn urn:nbn:de:bsz:ch1-qucosa-133517
work_keys_str_mv AT rittermarc optimierungvonalgorithmenzurvideoanalyse, AT eiblmaximilian optimierungvonalgorithmenzurvideoanalyse, AT hamkerfred optimierungvonalgorithmenzurvideoanalyse